The Mole Review Notes 11.1

The Mole

- A counting unit
- 602 billion trillion = 602,000,000,000,000,000,000,000 = 6.02×10^{23}
- Named in honor of
- 6.02×10^{23} particles $=1$ mole

Just How Big is a Mole?

- Enough soft drink cans to cover the surface of the earth to a depth of over 200 miles.
- If we were able to count atoms at the rate of 10 million per second, it would take about 2 billion years to count the atoms in one mole.

Avogadro's Number as Conversion Factor

6.02×10^{23} particles $=1$ mole

6.02×10^{23} particles
 1 mole

or
1 mole
6.02×10^{23} particles

PARTICLES can be:
atoms, formula units, ions OR molecules!

A Mole of Particles Contains 6.02×10^{23} particles

1 mole C $=6.02 \times 10^{23} \mathrm{C}$ atoms 1 mole $\mathrm{H}_{2} \mathrm{O}=6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules 1 mole $\mathrm{NaCl}=6.02 \times 10^{23} \mathrm{NaCl}$ formula units

$1 \mathrm{NaCl} \rightarrow 1 \mathrm{Na}^{+}+1 \mathrm{Cl}^{-}$
1 mole $\mathrm{NaCl}=1$ mole Na^{+}ions $=6.02 \times 10^{23} \mathrm{Na}^{+}$ions $1 \mathrm{~mole} \mathrm{NaCl}=1 \mathrm{~mole} \mathrm{Cr}$ ions $=6.02 \times 10^{23} \mathrm{Cr}$ ions

Conversion Factor change UNITS!

Learning Check

1. Number of atoms in 0.500 mole of AI

2.Number of moles of S in $1.8 \times 10^{24} S$ atoms

3. How many particles are in 1.76 moles of Li?

The Mole

Review Notes 11.2 (pt.1)

Molar Mass = mass of 1 mole

- units: grams/mole
- = atomic mass... in grams!
- found on the periodic table 1 mole of \mathbf{C} atoms

1 mole of $\mathbf{M g}$ atoms
1 mole of Cu atoms

Mass of 1 mole = sum of atomic masses
1 mole of $\mathrm{CaCl}_{2}=? ? \mathrm{~g} / \mathrm{mol}$
1 mot Ca $\times 40.08 \frac{g}{\text { मान }}=$
2 mot Cl $\times 35.45 \frac{\mathrm{~g}}{\frac{\mathrm{gFT}}{}}=$
$110.98 \frac{\mathrm{~g}}{\mathrm{~mol}} \mathrm{CaCl}_{2}$
1 mole of $\mathrm{N}_{2} \mathrm{O}_{4}=$

For molar mass, ALWAYS use two decimal places!

Learning Check!

A. Molar Mass of $\mathrm{K}_{2} \mathrm{O}=? \mathrm{~g} / \mathrm{mol}$

$$
94.20 \mathrm{~g} / \mathrm{mol}
$$

B. Molar Mass of antacid $\mathrm{Al}(\mathrm{OH})_{3}=? \mathrm{~g} / \mathrm{mol}$ $78.01 \mathrm{~g} / \mathrm{mol}$

Learning Check

Prozac, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$, is a widely used antidepressant that inhibits the uptake of serotonin by the brain. Find its molar mass.

Molar mass of $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}=309.36 \mathrm{~g} / \mathrm{mole}$

Review Notes 11.2 (pt.2)

Conversions with Molar Mass

Mass A $\xrightarrow{\text { molar mass }}$ Moles A

Conversions with Molar Mass

Aluminum is often used for the structure of light-weight bicycle frames. How many grams of Al are in 3.00 moles of Al?
$\frac{\text { Known }}{3.00 \mathrm{~mol} \mathrm{Al}}$
Mass A $\xrightarrow{\text { molar mass }}$ Moles A

1. Molar mass of AI: 1 mole $\mathbf{A I}=26.98 \mathrm{~g} \mathrm{AI}$
2. Setup: Known x Conv. Factors $=$ Unknown

$$
3.00 \mathrm{~mol} \mathrm{~A}^{\prime} \times \frac{26.98 \mathrm{~g} \mathrm{AI}}{1 \mathrm{~mol} \mathrm{~A} \mathrm{I}}=
$$

The artificial sweetener aspartame (Nutra-Sweet) formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ is used to sweeten diet foods, coffee and soft drinks. How many moles of aspartame are present in 225 g of aspartame?

molar mass $=294.34 \mathrm{~g} / \mathrm{mol}$

$225 \mathrm{gCC}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \times \frac{1 \mathrm{~mol} \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}}{294.34 \mathrm{~g} \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}}=0.764 \mathrm{~mol} \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$

Just How Big is a Mole?

- If you had Avogadro's number of unpopped popcorn kernels, and spread them across the United States of America, the country would be covered in popcorn to a depth of over 9 miles.

Review Notes 11.2 (pt.3) Molar Conversions: Two steps

molar mass
Mass
 Moles

Avogadro's \#

\longleftrightarrow particles

Everything must go through Moles!!!

Molar Conversions: Two steps

How many atoms of Cu are present in 35.4 g of Cu ?

molar mass Avogadro's \#
 particles

35.4 gCu
 $=3.35 \times 10^{23}$ atoms Cu

Learning Check!

How many atoms of K are present in 78.4 g of K ?

78.4 gK

Learning Check!

What is the mass (in grams) of 1.20×10^{24} molecules of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$?

1.20×10^{24} molec $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{X}$

$=359 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Molar Conversions: 11.3 Breaking down a compound

- ION/ATOM RATIOS

$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

- IONS Ratio:
-1 f.u. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1 \mathrm{Na}^{+}$ion $+1 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$ion
OR
- ATOM ratio:
-1 f.u. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1 \mathrm{Na}$ atom 2 C atoms
3 H atoms
2 O atoms

Molar Conversions: Breaking down a compound

- Determine the number of acetate ions in 3.5 grams of sodium acetate.

Molar Conversions: Breaking down a compound

How many atoms of O are present in 78.1 g of

 oxygen?Did you remember oxygen is a diatomic molecule $\left(\mathrm{O}_{2}\right)$??
$78.1 \mathrm{~g}_{2} \times \frac{1 \mathrm{mot}_{2}}{32.0 \mathrm{~g} \theta_{2}} \times \frac{6.02 \times 10^{23} \text { molecules } \theta_{2}}{1{\mathrm{~mol} \theta_{2}}_{2}^{2}} \times \frac{2 \text { atoms } \mathrm{O}}{1 \frac{\text { molocute }_{2}}{2}}$

$$
=2,94 x_{1} 0^{24} \text { atons } 0
$$

Molar Conversions: 11.3 pt. 2 Breaking down a compound

How many mole ratios in $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$??
1 mole $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1 \mathrm{~mole} \mathrm{Na}^{+}$ions
$=1$ mole $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$ions
$=1$ mole Na atoms
$=2$ mole C atoms
$=3$ mole H atoms
$=2$ mole O atoms

Molar Conversions: Breaking down a compound

- Determine the number of moles of acetate ion in 3.5 moles of sodium acetate.

- Determine the number of moles of potassium ion in 0.176 moles of potassium phosphate.
$0.176 \mathrm{~mol} \mathrm{~K}_{3} \mathrm{PO}_{4} \quad \mathrm{x} \frac{3 \mathrm{~mol} \mathrm{~K}^{+}}{1 \mathrm{molK}_{3} \mathrm{PO}_{4}}=0.528 \mathrm{~mol} \mathrm{~K}$

Review Notes 11.4

Percent Composition

- Percent by mass of each element in a compound.

$\%$ by mass $=\frac{\text { Mass of element }}{\text { Mass } 100}$ Mass of compound

- Use given masses from an experiment (data).
- If no data, use molar masses (from periodic table!

Percent Composition

What percent of water is hydrogen?

Known
Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$

Unknown
\%H

$$
\% \text { by mass }=\frac{\text { Mass of element }}{\text { Mass of compound }} \times 100
$$

2.02 g H
18.02 $\mathrm{g} \mathrm{H}_{2} \mathrm{O}$

Percent Composition

Calculate the percent composition of table salt.

Known
Table Salt (NaCl)

Unknown

$$
\begin{aligned}
& \% \mathrm{Na} \\
& \% \mathrm{Cl}
\end{aligned}
$$

$$
\% \text { by mass }=\frac{\text { Mass of element }}{\text { Mass of compound }} \times 100
$$

22.99 g Na

$$
\times 100=39.34 \%
$$

58.44 g NaCl

35.45g Cl

$$
x 100=60.66 \%
$$

58.44 g NaCl

$$
100.00 \%
$$

Percent Composition

A compound has 30.33\% chlorine and the rest is sodium. Is this table salt?

Table salt has is sodium and chlorine!
...but is has $\mathbf{6 0 . 6 6 \%} \mathbf{C l}$

Percent Composition

What is the percent carbon in $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NO}_{4}$ (the glutamic acid used to make MSG, monosodium glutamate), a compound used to flavor foods and tenderize meats?

$$
\frac{60.05 \mathrm{~g} \mathrm{C}}{146.14 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NO}_{4}} \times 100=41.09 \% \mathrm{C}
$$

Types of Formulas

- Empirical Formula
- Smallest ratio of atoms.
- Ionic formula are empirical formulas!
- Molecular Formula
- Actual number of atoms in one molecule
- Not reduced!

