Chapter 17 Reaction Rates

Thermodynamics – does a reaction take place?

Kinetics – how fast does a reaction proceed?

Rates

The speed of a chemical reaction is called its **reaction rate**.

Rates...

Reaction Rate:
 change in concentration of
 reactants and products over time.

reactants -> products

get consumed get formed

(tell how fast a reaction is going)

Example: TNT & leaves changing

Rates...

Calculating Average Reaction Rates

 Reaction rate is the change in the concentration of a reactant or a product with time (M/s)

Average rate =
$$-\frac{\Delta[A]}{\Delta t}$$

- Δ = change (final-initial)
- Δ[A] = change in concentration of A
 *[] represent M (Molarity) and A is the substance
- t= time expressed in seconds (s)

Since M is mol/L the final unit is expressed as mol/(L-s)

Practice Problem

1) Data for the reaction between butyl chloride and water is given. What is the average reaction rate over this time period expressed as moles of C_4H_9Cl consumed per liter per second?

Molar Concentration of Butyl Chloride (C₄H₉Cl)

[C ₄ H ₉ Cl] at	[C ₄ H ₉ Cl] at
t=0.00 s	t=0.00 s
0.220 M	0.100 M

Practice Problem

Time	[NaN ₂]
0 s	0.500 M
l s	0.473 M
5 s	0.378 M
10 s	0.286 M
15 s	0.216 M
20 s	0.163 M

- 2) Given the following rate data concerning the decomposition of sodium azide into nitrogen gas, determine its average rate expressed in moles of NaN₃ consumed per liter per second between the start and after 5 seconds.
- 3) Calculate the average reaction rate at the start to 20 seconds.

Collision Theory-atoms, ions, and molecules must collide in order to react

Collision Theory.

- For rxn to occur, collision must have:
 - proper orientation (position)
 - minimum energy needed to react called Activation Energy

Reaction progress ---->

5 Factors Affecting Rates

- The speed that a reaction takes place can be affected by:
 - Nature of Reactants
 - Temperature
 - Surface Area
 - Concentration
 - Catalysts

1) Nature of Reactants

 Some substances are more reactive than others.

Which is faster and why?

$$Ca + 2H_2O \rightarrow H_2 + Ca(OH)_2$$

$$2Na + 2H_2O \rightarrow H_2 + 2Na(OH)_2$$

2) Temperature

Why does milk last longer in the fridge?

Temp. Rate

more energy, more collisions

3) Surface Area

4) Concentration

- Conc. Rate

more collisions

Concentration Continued...

- Conc. Rate

5) Catalysts

- speed up a reaction without being consumed.
- lower the activation energy.

How does a catalyst affect collisions?

More collisions have sufficient energy to initiate reaction!

Practice Problem

3) Nitrogen monoxide reacts with chlorine gas to form nitrosyl chloride according to the following equation: $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$

Time (s)	[Cl ₂] (M)
0.0	0.00640
30.0	0.00295

Calculate the average rate of the reaction over this time in terms of disappearance of chlorine.