Chapter 17 Reaction Rates

Thermodynamics - does a reaction take place?

Kinetics - how fast does a reaction proceed?

Rates

The speed of a chemical reaction is called its reaction rate.

Rates...

- Reaction Rate:
change in concentration of reactants and products over time.

reactants \rightarrow products

get consumed get formed

- (tell how fast a reaction is going)

Example: TNT \& leaves changing

Rates...

Time

more reactants

more products

Reaction:
reactants \square products

Calculating Average Reaction Rates

- Reaction rate is the change in the concentration of a reactant or a product with time (M / s)

$$
\text { Average rate }=-\frac{\Delta[\mathrm{A}]}{\Delta t}
$$

- $\Delta=$ change (final-initial)
- $\Delta[\mathrm{A}]=$ change in concentration of A
*[] represent M (Molarity) and A is the substance
- $\mathrm{t}=$ time expressed in seconds (s)

Since M is $\mathrm{mol} / \mathrm{L}$ the final unit is expressed as $\mathbf{m o l} /(\mathrm{L} \cdot \mathrm{s})$

Practice Problem

1) Data for the reaction between butyl chloride and water is given. What is the average reaction rate over this time period expressed as moles of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ consumed per liter per second?

Molar Concentration of Butyl Chloride ($\mathbf{C}_{\mathbf{4}} \mathbf{H}_{9} \mathrm{Cl}$)

```
[\mp@subsup{C}{4}{4}\mp@subsup{H}{9}{}\textrm{Cl}]\mathrm{ at [C}\mp@subsup{C}{4}{}\mp@subsup{\textrm{H}}{9}{}\textrm{Cl}] at
t=0.00 s t=0.00 s
```


0.220 M $\quad 0.100$ M

Practice Problem

Time	$[\mathrm{NaN}]$
0 s	0.500 M
1 s	0.473 M
5 s	0.578 M
10 s	0.286 M
15 s	0.216 M
20 s	0.163 M

2) Given the following rate data concerning the decomposition of sodium azide into nitrogen gas, determine its average rate expressed in moles of NaN_{3} consumed per liter per second between the start and after 5 seconds.
3) Calculate the average reaction rate at the start to 20 seconds.

Collision Theory-atoms, ions, and molecules must collide in order to react

Ineffective Collision

Effective Collision

Collision Theory.

- For rxn to occur, collision must have:
- proper orientation (position)
- minimum energy needed to react called Activation Energy

5 Factors Affecting Rates

- The speed that a reaction takes place can be affected by:
- Nature of Reactants
- Temperature
- Surface Area
- Concentration
- Catalysts

1) Nature of Reactants

- Some substances are more reactive than others.

Which is faster and why?

$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}$
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+2 \mathrm{Na}(\mathrm{OH})_{2}$

2) Temperature

- Why does milk last longer in the fridge?
- TTemp. \Rate

- more energy, more collisions

3) Surface Area

- -Surf. Area \$Rate
 - more collisions

4) Concentration

- TConc. TRate

- more collisions

Concentration Continued...

- TConc. T̂Rate

5) Catalysts

- speed up a reaction without being consumed.
- lower the activation energy.

How does a catalyst affect collisions?

More collisions have sufficient energy to initiate reaction!

Practice Problem

3) Nitrogen monoxide reacts with chlorine gas to form nitrosyl chloride according to the following equation: $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{g})$

Time (s)	$\left[\mathrm{Cl}_{2}\right](\mathrm{M})$
0.0	0.00640
30.0	0.00295

Calculate the average rate of the reaction over this time in terms of disappearance of chlorine.

