


#### What is Chemical Bonding?

- Chemical Bonding-force that holds atoms together.
  - •Atoms share <u>or</u> lose/gain <u>valence electrons</u>.
  - •Atoms *share or lose/gain* electrons to be **stable**!
    - Full valence shells = **8 valence e** = stablity!
    - This is the "octet rule"-rule of 8!
  - •Sharing e<sup>-</sup> = covalent compounds
  - ·Lose/gain e = Ionic Compounds

#### Formation of Ions from Metals

- Metals lose electrons to become stable
- Metals form + ions = cations



#### **Formation of Sodium Ion**

#### **Sodium atom**

#### **Sodium ion**

Na • - e<sup>-</sup> 
$$\longrightarrow$$
 Na +

 $1s^2 2s^2 2p^6 3s^1$ 
 $2 + 8 + 1$ 
 $1s^2 2s^2 2p^6$ 
 $2 + 8 (Ne e- conf.)$ 

#### Formation of Magnesium Ion

#### **Magnesium atom**

#### **Magnesium ion**

• Mg • - 
$$2e^- \longrightarrow Mg^{2+}$$
 $1s^2 \ 2s^2 2p^6 \ 3s^2$ 
 $2 + 8 + 2$ 
 $2 + 8 \text{ (Ne e conf.)}$ 
 $12 \ p^+$ 
 $12 \ e^ 0$ 
 $10 \ e^ 2^+$ 

#### **Learning Check**

Write the ion for each of the following:

A. 12 p<sup>+</sup> and 10 e<sup>-</sup>

$$Mg^{2+}$$

B. 50p<sup>+</sup> and 46 e-

C. 15 p<sup>+</sup> and 18e-

P3-

# Predicting Cation Ionic Charges

Group 1: Lose 1 electron to form 1+ ions

H+ Li+ Na+ K+

| 1<br>H<br>1.00    |     |                     |                       |                    |                      |                     |                       |                                          |                       |                     |                       |                     |                       |                       |                         |                   |                      | He<br>4.002602      |
|-------------------|-----|---------------------|-----------------------|--------------------|----------------------|---------------------|-----------------------|------------------------------------------|-----------------------|---------------------|-----------------------|---------------------|-----------------------|-----------------------|-------------------------|-------------------|----------------------|---------------------|
| L:<br>6.94        | i   | 4<br>Be<br>9.012182 |                       |                    |                      |                     |                       |                                          |                       |                     |                       |                     | B<br>10.811           | 6<br>C<br>12.0107     | 7<br>N<br>14.00674      | 8<br>O<br>15.9994 | 9<br>F<br>18.9984032 | 10<br>Ne<br>20.1797 |
| 11<br>N:<br>22.98 | a 1 | 12<br>Mg<br>24.3050 |                       |                    |                      |                     |                       |                                          |                       |                     |                       |                     | 13<br>Al<br>26.981538 | 14<br>Si<br>28.0855   | 15<br>P<br>30.973761    | 16<br>S<br>32.866 | 17<br>Cl<br>35.4527  | 18<br>Ar<br>39.948  |
| 19<br>K<br>39.0   |     | 20<br>Ca<br>40.078  | 21<br>Sc<br>44.955910 | Ti<br>47.867       | V<br>50.9415         | 24<br>Cr<br>51.9961 | 25<br>Mn<br>54.938049 | <sup>26</sup><br>Fe<br><sup>55,845</sup> | CO<br>58.933200       | Ni<br>58.6934       | Cu<br>63.546          | Zn<br>65.39         | 31<br>Ga<br>69.723    | Ge<br>72.61           | ${}^{33}_{\mathrm{AS}}$ | 34<br>Se<br>78.96 | Br<br>79.904         | Kr<br>83.80         |
| 37<br>Rl<br>85.4  | b   | 38<br>Sr<br>87.62   | Y<br>88.90585         | 2r<br>2r<br>91.224 | 41<br>Nb<br>92.90638 | 42<br>Mo<br>95.94   | Tc<br>(98)            | 44<br>Ru<br>101.07                       | 45<br>Rh<br>102.90550 | 46<br>Pd<br>106.42  | 47<br>Ag<br>107.8682  | 48<br>Cd<br>112.411 | 49<br>In<br>114.818   | 50<br>Sn<br>118.710   | 51<br>Sb<br>121.760     | Te<br>127.60      | 53<br>I<br>126.90447 | Xe<br>131.29        |
| 55<br>C:<br>132.9 | s   | 56<br>Ba<br>137.327 | 57<br>La<br>138.9055  | 72<br>Hf<br>178.49 | 73<br>Ta<br>180.9479 | 74<br>W<br>183.84   | 75<br>Re<br>186.207   | 76<br>Os<br>190.23                       | 77<br>Ir<br>192.217   | 78<br>Pt<br>195.078 | 79<br>Au<br>196.96655 | Hg<br>200.59        | 81<br>T1<br>204.3833  | Pb<br>207.2           | 83<br>Bi<br>208.98038   | PO<br>(209)       | 85<br>At<br>(210)    | 86<br>Rn<br>(222)   |
| F1<br>(223        | r   | 88<br>Ra<br>(226)   | Ac<br>(227)           | 104<br>Rf<br>(261) | 105<br>Db<br>(262)   | 106<br>Sg<br>(263)  | 107<br>Bh<br>(262)    | 108<br>Hs<br>(265)                       | 109<br>Mt<br>(266)    | 110<br>(269)        | (272)                 | (277)               |                       | 114<br>(289)<br>(287) |                         | 116<br>(289)      |                      |                     |

# Predicting Cation Ionic Charges

Group 2: Loses 2 electrons to form 2+ ions  $Be^{2+} Mg^{2+} Ca^{2+} Sr^{2+} Ba^{2+}$ 

| 1<br>H<br>1.00794   |                     |                      |                    |                      |                    |                     |                    |                     |                     |                       |                                  |                       |                     |                       |                   |                      | He<br>4.002602      |
|---------------------|---------------------|----------------------|--------------------|----------------------|--------------------|---------------------|--------------------|---------------------|---------------------|-----------------------|----------------------------------|-----------------------|---------------------|-----------------------|-------------------|----------------------|---------------------|
|                     | 4<br>Be<br>9.012182 |                      |                    |                      |                    |                     |                    |                     |                     |                       |                                  | B<br>10.811           | C<br>12.0107        | 7<br>N<br>14.00674    |                   | 9<br>F<br>18.9984032 | 10<br>Ne<br>20.1797 |
|                     | 12<br>Mg<br>24.3050 |                      |                    |                      |                    |                     |                    |                     |                     |                       |                                  | 13<br>Al<br>26.981538 |                     | 15<br>P<br>30.973761  |                   | 17<br>Cl<br>35.4527  | 18<br>Ar<br>39.948  |
| 19<br>K<br>39.0983  |                     | 21<br>Sc<br>4.955910 | $\vdash$           | V<br>50.9415         | _                  | Mn<br>54.938049     | Fe<br>55.845       | Co<br>58.933200     | Ni<br>58.6934       | Cu<br>63.546          | $\operatorname{Zn}^{30}_{65.39}$ | 31<br>Ga<br>∞.723     | Ge<br>72.61         | AS<br>74.92.160       | 34<br>Se<br>78.96 | Br<br>79.904         | Kr<br>83.80         |
| 37<br>Rb<br>85.4678 |                     | 39<br>Y<br>88.90585  |                    | 41<br>Nb<br>92.90638 | Mo<br>95.94        | Tc<br>(98)          |                    | Rh<br>102.90550     |                     | Ag<br>197.8682        |                                  | 49<br>In<br>114.818   | 50<br>Sn<br>118.710 | Sb<br>121.760         |                   | 53<br>I<br>126.90447 | _                   |
|                     | 56<br>Ba<br>137.327 | 57<br>La<br>138.9055 | -                  | Ta<br>180.9479       | 74<br>W<br>183.84  | 75<br>Re<br>186.207 | 76<br>Os<br>190.23 | 77<br>Ir<br>192.217 | 78<br>Pt<br>195.078 | 79<br>Au<br>196.96655 |                                  | T1<br>204.3833        | Pb<br>207.2         | 83<br>Bi<br>208.98038 | PO<br>(209)       | At<br>(210)          | Rn<br>(222)         |
| Fr<br>(223)         | 88<br>Ra<br>(226)   | AC<br>(227)          | 104<br>Rf<br>(261) | Db<br>(262)          | 106<br>Sg<br>(263) | Bh<br>(262)         | 108<br>Hs<br>(265) | 109<br>Mt<br>(266)  | (269)               | (272)                 | (277)                            |                       | (289)<br>(287)      |                       | 116<br>(289)      |                      |                     |

# Predicting Cation Ionic Charges

 $B^{3+}$   $AI^{3+}$   $Ga^{3+}$ 

Group 13: Loses 3 electrons to form 3+ ions

|   | 1<br>H<br>1.00794     |                     |                       |                    |                      |                     |                       |                    |                       |                     |                       |                                                                    |                       |                       |                       |                   |                      | He<br>4.002602      |
|---|-----------------------|---------------------|-----------------------|--------------------|----------------------|---------------------|-----------------------|--------------------|-----------------------|---------------------|-----------------------|--------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-------------------|----------------------|---------------------|
|   | Li<br>6.941           | 4<br>Be<br>9.012182 |                       |                    |                      |                     |                       |                    |                       |                     |                       |                                                                    | B<br>10.811           | 6<br>C<br>12.0107     | 7<br>N<br>14.00674    | 8<br>O<br>15.9994 | 9<br>F<br>18.9984032 | 10<br>Ne<br>20.1797 |
| 2 | 11<br>Na<br>22.989770 | 12<br>Mg<br>24.3050 |                       |                    |                      |                     |                       |                    |                       |                     |                       |                                                                    | 13<br>Al<br>26.981538 | 14<br>Si<br>28.0855   | 15<br>P<br>30.973761  | 16<br>S<br>32.066 | 17<br>Cl<br>35.4527  | 18<br>Ar<br>39.948  |
|   | 19<br>K<br>39.0983    | Ca<br>40.078        | 21<br>Sc<br>44.955910 | Ti<br>47.867       | V<br>50.9415         | 24<br>Cr<br>51.9961 | 25<br>Mn<br>54.938049 | Fe<br>55.845       | Co<br>58.933200       | Ni<br>58.6934       | Cu<br>63.546          | $\mathop{Zn}_{\scriptscriptstyle{65.39}}^{\scriptscriptstyle{30}}$ | 31<br>Ga<br>69.723    | 32<br>Ge<br>72.61     | 33<br>As<br>74.92160  | 34<br>Se<br>78.96 | 35<br>Br<br>79.904   | Kr<br>83.80         |
|   | Rb<br>85.4678         | 38<br>Sr<br>87.62   | Y<br>88.90585         | 2r<br>2r<br>91.224 | 41<br>Nb<br>92.90638 | 42<br>Mo<br>95.94   | 43<br>Tc<br>(98)      | 44<br>Ru<br>101.07 | 45<br>Rh<br>102.90550 | 46<br>Pd<br>106.42  | 47<br>Ag<br>107.8682  | 48<br>Cd<br>112.411                                                | 49<br>In<br>114.818   | 50<br>Sn<br>118.710   | 51<br>Sb<br>121.760   | Te<br>127.60      | 53<br>I<br>126.90447 | 54<br>Xe<br>131.29  |
|   | 55<br>Cs<br>132.90545 | 56<br>Ba<br>137.327 | 57<br>La<br>138.9055  | 72<br>Hf<br>178.49 | 73<br>Ta<br>180.9479 | 74<br>W<br>183.84   | 75<br>Re<br>186.207   | 76<br>Os<br>190.23 | 77<br>Ir<br>192.217   | 78<br>Pt<br>195.078 | 79<br>Au<br>196.96655 | Hg<br>200.59                                                       | 81<br>T1<br>204 3833  | Pb<br>207.2           | 83<br>Bi<br>208.98038 | PO<br>(209)       | 85<br>At<br>(210)    | Rn<br>(2222)        |
|   | Fr<br>(223)           | 88<br>Ra<br>(226)   | Ac<br>(227)           | 104<br>Rf<br>(261) | Db<br>(262)          | 106<br>Sg<br>(263)  | 107<br>Bh<br>(262)    | 108<br>Hs<br>(265) | 109<br>Mt<br>(266)    | 110<br>(269)        | (272)                 | (277)                                                              |                       | 114<br>(289)<br>(287) |                       | 116<br>(289)      |                      |                     |

Sn<sup>4+</sup> Pb<sup>4+</sup> Electrons

| 1<br>H<br>1.00794     |                     |                       |                    |                      |                    |                       |                    |                       |                     |                       |                                                                                   |                       |                       |                       |                   |                      | He<br>4.002602      |
|-----------------------|---------------------|-----------------------|--------------------|----------------------|--------------------|-----------------------|--------------------|-----------------------|---------------------|-----------------------|-----------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-------------------|----------------------|---------------------|
| 3<br>Li<br>6.941      | 4<br>Be<br>9.012182 |                       |                    |                      |                    |                       |                    |                       |                     |                       |                                                                                   | B<br>10.811           | C<br>12.0107          | 7<br>N<br>14.00674    | 8<br>O<br>15.9994 | 9<br>F<br>18.9984032 | 10<br>Ne<br>20.1797 |
| 11<br>Na<br>22.989770 | Mg<br>24.3050       |                       |                    |                      |                    |                       |                    |                       |                     |                       |                                                                                   | 13<br>Al<br>26.981538 | 14<br>Si<br>28.0855   | 15<br>P<br>30.973761  | 16<br>S<br>32.066 | 17<br>Cl<br>35.4527  | 18<br>Ar<br>39.948  |
| 19<br>K<br>39.0983    | 20<br>Ca<br>40.078  | 21<br>Sc<br>44.955910 | Ti<br>47.867       | V<br>50.9415         | Cr<br>51.9961      | 25<br>Mn<br>54.938049 | Fe<br>55.845       | Co<br>58.933200       | Ni<br>58.6934       | Cu<br>63.546          | $\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$ | 31<br>Ga<br>69.723    | Ge<br>72.61           | 33<br>As<br>74.92.160 | 34<br>Se<br>78.96 | Br<br>79.904         | Kr<br>83.80         |
| Rb<br>85.4678         | 38<br>Sr<br>87.62   | Y<br>88.90585         | 40<br>Zr<br>91.224 | 41<br>Nb<br>92.90638 | 42<br>Mo<br>95.94  | Tc<br>(98)            |                    | 45<br>Rh<br>102.90550 | 46<br>Pd<br>106.42  | 47<br>Ag<br>197.8682  | 48<br>Cd<br>112.411                                                               | 49<br>In<br>114.818   | 50<br>Sn<br>118.710   | 51<br>Sb<br>121.760   | Te<br>127.60      | 53<br>I<br>126.90447 | Xe<br>131.29        |
| 55<br>Cs<br>132.90545 | 56<br>Ba<br>137.327 | 57<br>La<br>138.9055  | 72<br>Hf<br>178.49 | 73<br>Ta<br>180.9479 | 74<br>W<br>183.84  | 75<br>Re<br>186.207   | 76<br>Os<br>190.23 | 77<br>Ir<br>192.217   | 78<br>Pt<br>195.078 | 79<br>Au<br>196.96655 | Hg<br>200.59                                                                      | 81<br>T1<br>204.3833  | 82<br>Pb<br>207.2     | 83<br>Bi<br>108.98038 | PO<br>(209)       | At<br>(210)          | Rn<br>(222)         |
| Fr<br>(223)           | 88<br>Ra<br>(226)   | Ac<br>(227)           | 104<br>Rf<br>(261) | 105<br>Db<br>(262)   | 106<br>Sg<br>(263) | 107<br>Bh<br>(262)    | 108<br>Hs<br>(265) | 109<br>Mt<br>(266)    | (269)               | (272)                 | (277)                                                                             |                       | 114<br>(289)<br>(287) |                       | 116<br>(289)      |                      |                     |

#### **Learning Check**

- A. Number of valence electrons in aluminum
  - 1) 1 e<sup>-</sup>

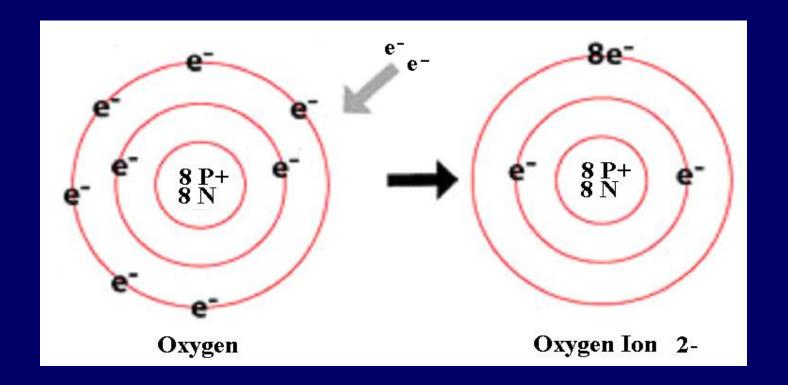
2) 2 e<sup>-</sup>

3) 3 e<sup>-</sup>

- B. Change in electrons for octet
  - 1) lose 3e<sup>-</sup>

2) gain 3 e<sup>-</sup>

3) gain 5 e<sup>-</sup>


- C. Ionic charge of aluminum
  - 1) 3-

2) 5-

 $3) 3^{+}$ 

#### Formation of Ions from Nonmetals

- Nonmetals gain electrons to become stable
- Nonmetals form ions = anions



N<sup>3</sup>- Nitride

P<sup>3</sup>- Phosphide

As<sup>3</sup>- Arsenide

Group 15: Gains 3 electrons to form 3- ions

| 1<br>H<br>1.00794     |                     |                       |                    |                      |                    |                       |                    |                    |                     |                       |              |                       |                       |                       |                   |                      | He<br>4.002602     |
|-----------------------|---------------------|-----------------------|--------------------|----------------------|--------------------|-----------------------|--------------------|--------------------|---------------------|-----------------------|--------------|-----------------------|-----------------------|-----------------------|-------------------|----------------------|--------------------|
| 3<br>Li<br>6.941      | 4<br>Be<br>9.012182 |                       |                    |                      |                    |                       |                    |                    |                     |                       |              | B<br>10.811           | C<br>12.0107          | 7<br>N<br>14.00674    | 8<br>O<br>15.9994 | 9<br>F<br>18.9984032 | _                  |
| 11<br>Na<br>22.989770 | 12<br>Mg<br>24.3050 |                       |                    |                      |                    |                       |                    |                    |                     |                       |              | 13<br>Al<br>26.981538 |                       | 15<br>P<br>30.973761  |                   | 17<br>Cl<br>35.4527  | 18<br>Ar<br>39.948 |
| 19<br>K<br>39.0983    | -                   | 21<br>Sc<br>44.955910 | Ti<br>47.867       | V<br>50.9415         |                    | 25<br>Mn<br>54.938049 | Fe<br>55.845       | CO<br>58.933200    |                     | Cu<br>63.546          | Zn<br>65.39  | 31<br>Ga<br>69.723    |                       | 33<br>As<br>74.92160  | 34<br>Se<br>78.96 | Br<br>79.904         | Kr<br>83.80        |
| Rb<br>85.4678         | 38<br>Sr<br>87.62   | Y<br>88.90585         |                    | 41<br>Nb<br>92.90638 | 42<br>Mo<br>95.94  | Tc<br>(98)            | Ru<br>101.07       | Rh<br>102.90550    | Pd<br>106.42        | Ag<br>197.8682        |              | 49<br>In<br>114.818   | 50<br>Sn<br>118.710   | Sb<br>121.760         |                   | 53<br>I<br>126.90447 | Xe<br>131.29       |
| CS<br>132.90545       | Ba<br>137.327       | 57<br>La<br>138.9055  | 72<br>Hf<br>178.49 | 73<br>Ta<br>180.9479 | 74<br>W<br>183.84  | 75<br>Re<br>186.207   | 76<br>Os<br>190.23 | Ir<br>192.217      | 78<br>Pt<br>195.078 | 79<br>Au<br>196.96655 | Hg<br>200.59 | 81<br>T1<br>204.3833  | Pb<br>207.2           | 83<br>Bi<br>208.98038 | PO<br>(209)       | At<br>(210)          | Rn<br>(222)        |
| Fr<br>(223)           | 88<br>Ra<br>(226)   | Ac<br>(227)           | Rf<br>(261)        | Db<br>(262)          | 106<br>Sg<br>(263) | 107<br>Bh<br>(262)    | HS<br>(265)        | 109<br>Mt<br>(266) | (269)               | (272)                 | (277)        |                       | 114<br>(289)<br>(287) |                       | (289)             |                      |                    |

O<sup>2</sup>- Oxide

S<sup>2</sup>- Sulfide

Se<sup>2</sup>- Selenide

Group 16: Gains 2 electrons to form 2- ions

| 1<br>H<br>1.00794             |                     |                       |                    |                      |                    |                       |                    |                     |                     |                       |                                                                    |                       |                       |                       | _                 |                      | He<br>4.002602      |
|-------------------------------|---------------------|-----------------------|--------------------|----------------------|--------------------|-----------------------|--------------------|---------------------|---------------------|-----------------------|--------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-------------------|----------------------|---------------------|
| Li<br>6.941                   | 4<br>Be<br>9.012182 |                       |                    |                      |                    |                       |                    |                     |                     |                       |                                                                    | B<br>10.811           | C<br>12.0107          | 7<br>N<br>14.00674    | 8<br>O<br>15.9994 | 9<br>F<br>18.9984032 | 10<br>Ne<br>20.1797 |
|                               | Mg<br>24.3050       |                       |                    |                      |                    | •                     |                    |                     |                     |                       |                                                                    | 13<br>Al<br>26.981538 | Si<br>28.0855         | 15<br>P<br>30.973761  | 16<br>S<br>32.066 | 17<br>Cl<br>35.4527  | 18<br>Ar<br>39.948  |
| 19<br>K<br>39.0983            | _                   | 21<br>Sc<br>44.955910 | Ti<br>47.867       | V<br>50.9415         | -                  | 25<br>Mn<br>54.938049 | Fe<br>55.845       | Co<br>58.933200     | $\overline{}$       | Cu<br>63.546          | $\mathop{Zn}_{\scriptscriptstyle{65.39}}^{\scriptscriptstyle{30}}$ | 31<br>Ga<br>69.723    | Ge<br>72.61           | 33<br>As<br>74.92.160 |                   | 35<br>Br<br>79.904   | Kr<br>83.80         |
| Rb<br>85.4678                 | 38<br>Sr<br>87.62   | Y<br>88.90585         |                    | 41<br>Nb<br>92.90638 | Mo<br>95.94        | Tc<br>(98)            |                    | Rh<br>102.90550     | Pd<br>106.42        | Ag<br>197.8682        |                                                                    | 49<br>In<br>114.818   | 50<br>Sn<br>118.710   |                       |                   | 53<br>I<br>126.90447 | Xe<br>131.29        |
| 55<br>Cs<br>132 <i>9</i> 0545 | _                   | 57<br>La<br>138.9055  | 72<br>Hf<br>178.49 | 73<br>Ta<br>180.9479 | 74<br>W<br>183.84  | 75<br>Re<br>186.207   | 76<br>Os<br>190.23 | 77<br>Ir<br>192.217 | 78<br>Pt<br>195.078 | 79<br>Au<br>196.96655 |                                                                    | 81<br>T1<br>204.3833  | Pb<br>207.2           | 83<br>Bi<br>208.98038 | Po<br>(209)       | 85<br>At<br>(210)    | Rn<br>(222)         |
| Fr<br>(223)                   | 88<br>Ra<br>(226)   | AC<br>(227)           | 104<br>Rf<br>(261) | Db<br>(262)          | 106<br>Sg<br>(263) | 107<br>Bh<br>(262)    | 108<br>Hs<br>(265) | 109<br>Mt<br>(266)  | (269)               | (272)                 | (277)                                                              |                       | 114<br>(289)<br>(287) |                       | (289)             |                      |                     |

F<sup>1</sup>- Fluoride

Br<sup>1-</sup> Bromide

Cl1- Chloride I1- Iodide

Group 17: Gains 1 electron to form 1- ions

| 1<br>H<br>1,0079     |                   |                       |                    |                      |                     |                       |                    |                       |                     |                       |                                                                                   |                       |                       |                       |                   |                     | He<br>4.002602      |  |
|----------------------|-------------------|-----------------------|--------------------|----------------------|---------------------|-----------------------|--------------------|-----------------------|---------------------|-----------------------|-----------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-------------------|---------------------|---------------------|--|
| Li<br>6.941          | Be<br>9.012182    |                       |                    |                      |                     |                       |                    |                       |                     |                       |                                                                                   | B<br>10.811           | C<br>12.0107          | 7<br>N<br>14.00674    | 8<br>O<br>15.9994 | 9<br>F<br>18.998403 | 10<br>Ne<br>20.1797 |  |
| 11<br>Na<br>22.98971 | Mg<br>24.3050     |                       |                    |                      |                     |                       |                    |                       |                     |                       |                                                                                   | 13<br>Al<br>26.981538 | 14<br>Si<br>28.0855   | 15<br>P<br>30.973761  | 16<br>S<br>32.066 | 17<br>Cl<br>35.4527 | 18<br>Ar<br>39.948  |  |
| 19<br>K<br>39.098    | Ca<br>40.078      | 21<br>Sc<br>44.955910 | Ti<br>47.867       | V<br>50.9415         | 24<br>Cr<br>51.9961 | 25<br>Mn<br>54.938049 | Fe<br>55.845       | Co<br>58.933200       | Ni<br>58.6934       | Cu<br>63.546          | $\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$ | 31<br>Ga<br>69.723    | Ge<br>72.61           | 33<br>As<br>74.92160  | 34<br>Se<br>78.96 | 35<br>Br<br>79.904  | Kr<br>83.80         |  |
| Rb<br>85.467         | 38<br>Sr<br>87.62 | Y<br>88.90585         | 40<br>Zr<br>91.224 | 41<br>Nb<br>92.90638 | 42<br>Mo<br>95.94   | Tc<br>(98)            | 44<br>Ru<br>101.07 | 45<br>Rh<br>102.90550 | 46<br>Pd<br>106.42  | 47<br>Ag<br>197.8682  | 48<br>Cd<br>112.411                                                               | 49<br>In<br>114.818   | 50<br>Sn<br>118.710   | 51<br>Sb<br>121.760   | Te<br>127.60      | 53<br>I<br>126.9044 | Xe<br>131.29        |  |
| Cs<br>132.905        | Ba<br>137.327     | 57<br>La<br>138.9055  | 72<br>Hf<br>178.49 | 73<br>Ta<br>180.9479 | 74<br>W<br>183.84   | 75<br>Re<br>186.207   | 76<br>Os<br>190.23 | 77<br>Ir<br>192.217   | 78<br>Pt<br>195.078 | 79<br>Au<br>196.96655 | 80<br>Hg<br>200.59                                                                | 81<br>T1<br>204.3833  | Pb<br>207.2           | 83<br>Bi<br>208.98038 | PO<br>(209)       | 85<br>At<br>(210)   | Rn<br>(222)         |  |
| Fr<br>(223)          | 88<br>Ra<br>(226) | Ac<br>(227)           | 104<br>Rf<br>(261) | Db<br>(262)          | 106<br>Sg<br>(263)  | 107<br>Bh<br>(262)    | 108<br>Hs<br>(265) | 109<br>Mt<br>(266)    | 110<br>(269)        | (272)                 | (277)                                                                             |                       | 114<br>(289)<br>(287) |                       | 116<br>(289)      |                     |                     |  |

Group 18: Stable Noble gases do not form ions!

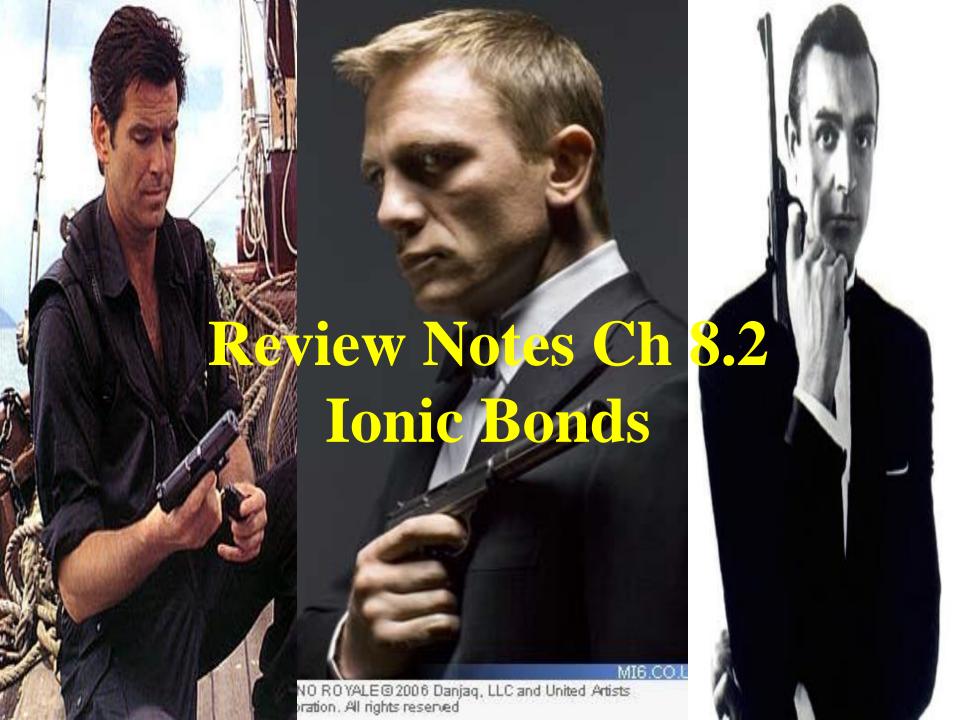
| 1<br>H<br>1.00794     |                     | _                     |                    |                      |                     |                       |                    |                       |                     |                       |                                                                                   |                       |                     |                       |                   |                     | 2<br>He<br>4.002602 |
|-----------------------|---------------------|-----------------------|--------------------|----------------------|---------------------|-----------------------|--------------------|-----------------------|---------------------|-----------------------|-----------------------------------------------------------------------------------|-----------------------|---------------------|-----------------------|-------------------|---------------------|---------------------|
| Li<br>6.941           | 4<br>Be<br>9.012182 |                       |                    |                      |                     |                       |                    |                       |                     |                       |                                                                                   | B<br>10.811           | C<br>12.0107        | 7<br>N<br>14.00674    | 8<br>O<br>15.9994 | 9<br>F<br>18.998403 | 10<br>Ne<br>20.1797 |
| -                     | 12<br>Mg<br>24.3050 |                       |                    |                      |                     |                       |                    |                       |                     |                       |                                                                                   | 13<br>Al<br>26.981538 | 14<br>Si<br>28.0855 | 15<br>P<br>30.973761  | 16<br>S<br>32.066 | 17<br>Cl<br>35.4527 | 18<br>Ar<br>39.948  |
| 19<br>K<br>39.0983    |                     | 21<br>Sc<br>44.955910 | Ti<br>47.867       | V<br>50.9415         | 24<br>Cr<br>51.9961 | 25<br>Mn<br>54.938049 | Fe<br>55.845       | Co<br>58.933200       | Ni<br>58.6934       | Cu<br>63.546          | $\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$ | 31<br>Ga<br>69.723    | Ge<br>72.61         | 33<br>As<br>74.92160  | 34<br>Se<br>78.96 | 35<br>Br<br>79.904  | 36<br>Kr<br>83.80   |
| Rb<br>85.4678         | 38<br>Sr<br>87.62   | Y<br>88.90585         | 2r<br>2r<br>91.224 | 41<br>Nb<br>92.90638 | 42<br>Mo<br>95.94   | Tc<br>(98)            | Ru<br>101.07       | 45<br>Rh<br>102.90550 | 46<br>Pd<br>106.42  | Ag<br>197.8682        | 48<br>Cd<br>112.411                                                               | 49<br>In<br>114.818   | 50<br>Sn<br>118.710 | 51<br>Sb<br>121.760   | Te<br>127.60      | 53<br>I<br>126.9044 | Xe<br>131.29        |
| 55<br>Cs<br>132.90545 |                     | 57<br>La<br>138.9055  | 72<br>Hf<br>178.49 | 73<br>Ta<br>180.9479 | 74<br>W<br>183.84   | 75<br>Re<br>186.207   | 76<br>Os<br>190.23 | 77<br>Ir<br>192.217   | 78<br>Pt<br>195.078 | 79<br>Au<br>196.96655 | Hg<br>200.59                                                                      | 81<br>T1<br>204.3833  | Pb<br>207.2         | 83<br>Bi<br>208.98038 | PO<br>(209)       | 85<br>At<br>(210)   | Rn<br>(222)         |
| Fr<br>(223)           | Ra<br>(226)         | Ac<br>(227)           | Rf<br>(261)        | Db<br>(262)          | 106<br>Sg<br>(263)  | 107<br>Bh<br>(262)    | HS<br>(265)        | 109<br>Mt<br>(266)    | (269)               | (272)                 | (277)                                                                             |                       | (289)<br>(287)      |                       | (289)             |                     |                     |

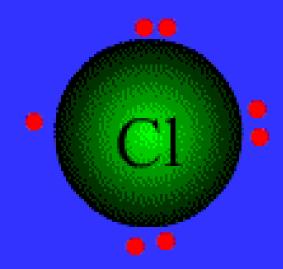
# Ionic Bonding – occurs when ions form an electrically-NEUTRAL compound by transferring electrons

Sodium and chlorine  $\rightarrow$  Na<sup>+</sup> Cl<sup>-</sup>  $\rightarrow$  NaCl<sup>-</sup> but

Calcium and nitrogen  $\rightarrow$  Ca<sup>2+</sup>N<sup>3-</sup>  $\rightarrow$  Ca<sub>3</sub>N<sub>2</sub>

Why??


# Write the <u>formula unit</u> for the ionic compound is formed between these atoms:


**Example: Calcium and nitrogen** 

A. Aluminum and bromine

B. Potassium and oxygen

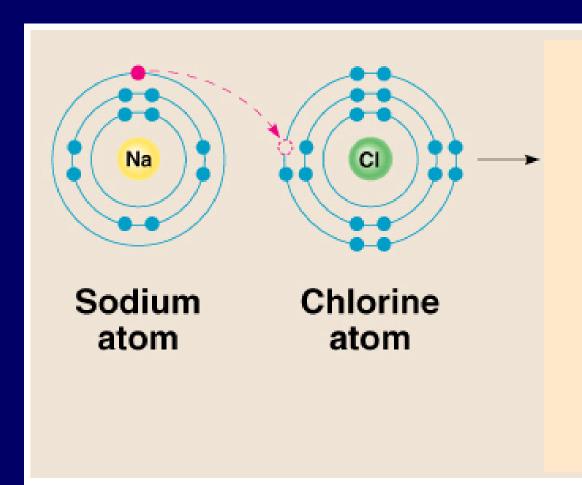
C. Lead(IV) and sulfur

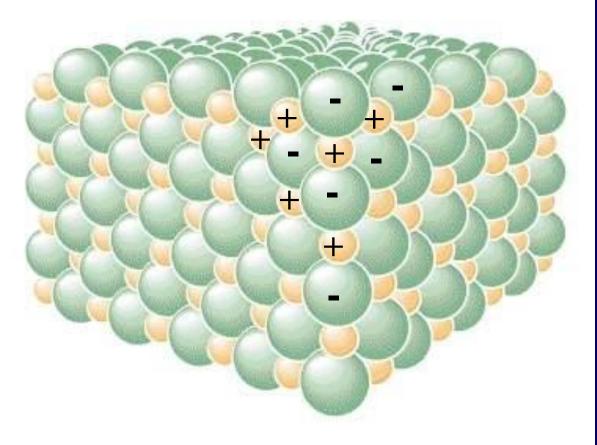


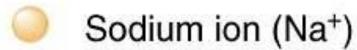




#### **How Ionic Bonding Works**

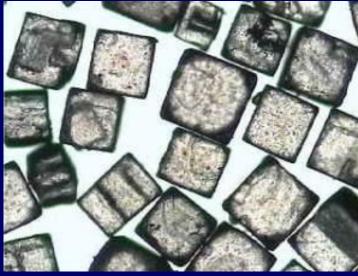

The negative and positively-charged ions are attracted to each other (like a magnet).


#### Ionic bonding –2 types


1 Metal ion + 1 Nonmetal ion

or

1 Metal ion + 1 Polyatomic ion










Copyright 1998 by John Wiley and Sons, Inc. All rights reserved.



Ionic cmpds form crystal lattices!

Repeating pattern

of +&

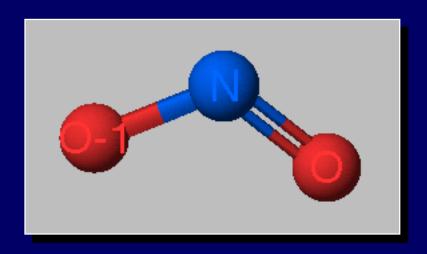
#### Ionic Bond

- Between atoms of metals and nonmetals with very different electronegativity
- Very STRONG attraction to each other.
- Produce *charged ions* when separated.

- -NaC1 Molten or dissolved  $Na^+ + C1^-$
- $-CaCl_2$  Molten or dissolved  $Ca^{2+} + 2Cl^{-1}$

## Ionic Properties

- Conductors of electricity if molten or dissolved.
  - Electrolytes!
- Have high melting point.
- High boiling points.
- -Solids! Hard, rigid, brittle.


| Formula           | Cation                        | Compound Name       |
|-------------------|-------------------------------|---------------------|
| FeCl <sub>3</sub> | $(\mathbf{F}\mathbf{e}^{3+})$ | iron (III) chloride |
| CuCl              |                               |                     |
|                   |                               | tin (IV) fluoride   |
|                   |                               | lead (II) chloride  |
| $Fe_2S_3$         | $(Fe^{3+})$                   |                     |
| CuO               |                               |                     |
|                   |                               | Lead(II)fluoride    |
| $CrO_3$           |                               |                     |
| $Cr_2O_3$         |                               |                     |

# Polyatomic Ions - 8.3

NO<sub>3</sub>nitr<u>ate</u> ion



NO<sub>2</sub>nitrite ion



## Oxyion Nomenclature

Sodium Sulfate Na<sup>+</sup> and SO<sub>4</sub><sup>-2</sup> Na<sub>2</sub>SO<sub>4</sub>

Iron (III) hydroxide Fe<sup>+3</sup> and OH<sup>-</sup> Fe(OH)<sub>3</sub>

Ammonium carbonate  $NH_4^+$  and  $CO_3^{-2}$  $(NH_4)_2CO_3$ 

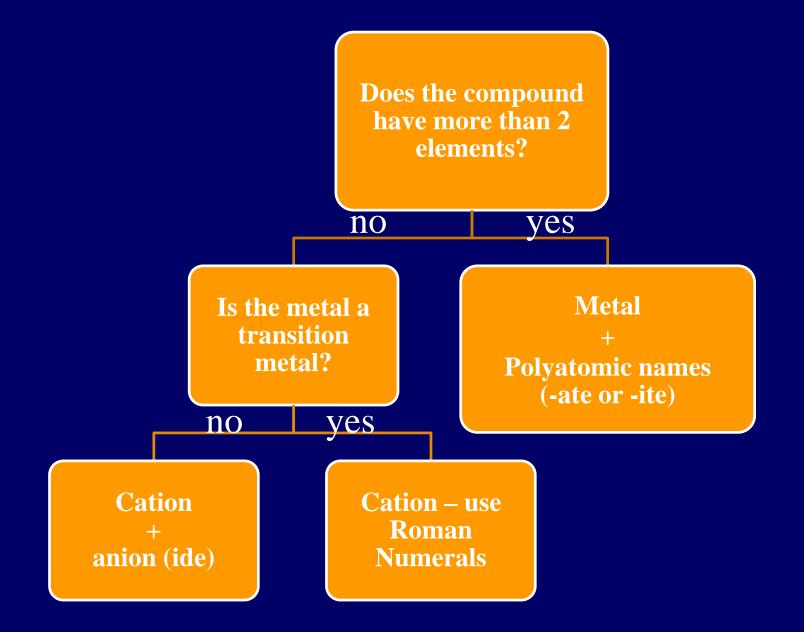
#### Writing Formulas for Ternary Ionic Compounds

- Step 1– write cation then polyatomic
- Step 2 Charges must equal zero!!!
  "Cross the charges" if they don't cancel out.
- Step 3-- Use **parentheses** for multiple polyatomic ions

Practice Problems: Write the formula for each ionic compound.

copper(II) bromide

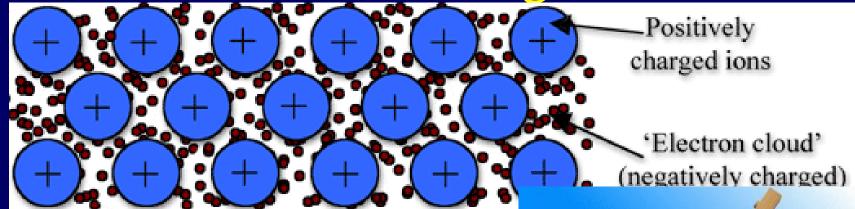
$$Cu^{+2}Br^{-1} = CuBr_2$$
 ...(don't show 1's)


aluminum nitrite

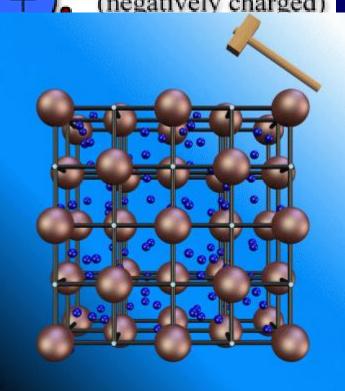
$$Al^{+3}NO_{2}^{-1} = Al(NO_{2})_{3}$$

barium hydrogen carbonate

$$Ba^{+2} + CO_3^{-1} = Ba(HCO_3)_2$$

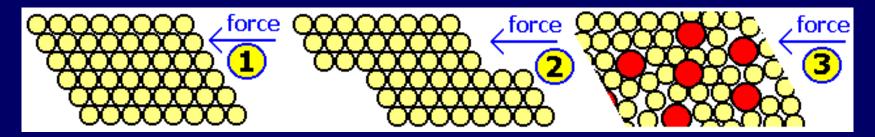

# Naming Ionic Compounds




# METALLIC BOND

bond found in metals; holds metal atoms together very strongly

Metallic Bonding - 8.4




- Formed between atoms of met
- A very strong attraction
- Electron cloud around nuclei
- Good conductors at all states
- Lustrous, ductile, malleable
- Very high melting points



#### Metals Alloys

Metals do not combine with metals. They form **alloys** which is a solution of a metal in a metal.



#### Examples:

- Stainless steel iron with chromium
- Brass copper and zinc
- Bronze copper with tin and ...
- Pewter tin with copper, antimony, tin, ...

# Formula Weights

- Formula weight is the sum of the atomic masses.
- Example- CO<sub>2</sub>
- Mass, C + O + O
  12.011 + 15.994 + 15.994
  43.999

#### Practice

- Compute the mass of the following compounds round to nearest tenth & state type of bond:
- NaCl;
- 23 + 35 = 58; Ionic Bond
- $C_2H_6$ ;
- 24 + 6 = 30; Covalent Bond
- $Na(CO_3)_2$ ;
- 23 + 2(12 + 3x16) = 123; Ionic & Covalent