ENERGY \& CHEMICAL CHANGE

Chapter 16

ENERGY: CAPACITY TO DO WORK!

All Energy

Potential
Energy

Kinetic
Energy

Gravitation Potential
Energy

Elastic
Potential
Energy

Chemical
Potential
Energy

KINETIC ENERGY

oEnergy an object ha due to its motion
Meight $=52.0 \mathrm{~mm} \quad$ Enetic

POTENTIAL ENERGY

oEnergy that is stored and waiting to be used later

CHEMICAL POTENTIAL ENERGY

- Potential energy stored within the chemical bonds of an object

Chemical Potential Energy

THERMOCHEMISTRY

-Study of energy changes during

 chemical reactions$$
{ }^{2 \text { 2HCl }^{2}} 18.6
$$

$\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{HCl}+184.6 \mathrm{KJ}$

HEAT (Q)

- Energy transferred from warmer objects to cooler ones.

System-the part yo/are studying
everything else

HEAT TRANSFER

ENDOTHERMIC: HEAT TRANSFERS FROM SURROUNDINGS TO THE SYSTEM.

Surroundings

System

Endothermic

$$
q_{\text {eur }}>0
$$

Heat is gained or lost?
So, temp in systemgoes? UP
Temp of the surroundings goes DOWN.

THERMIC: HEAT TRANSFERS

FROM SYSTEM TO SURROUNDINGS.

Surroundings

System

Exothermic

$$
q_{\text {sys }}<0
$$

Heat is gained orlost?
So, temp in system goes? DOWN
Temp of the surroundings goes UP

OR
 THERMIC?

- Activation energy - energy required to start a reaction

FIND ONE PARTNER... EXOTHERMIC US. ENDOTHERMIC

- Exothermic - person on the right
- Endothermic - person on the left
- Become an expert and then share
-Heat Transfer?
-System vs. Surroundings?
-Temp change? How does it feel?
-What does the graph look like? (Looking for the one with the hill in it)

CATALYST - SPEEDS UP a reaction by lowering the activation energy

Progress of reaction
HEAT CAPACITY

The heat required to raise an object's temp(T) by $1^{\circ} \mathrm{C}$.

Which has the larger heat capacity?

- Depends on mass and matter
- greater mass = greater heat capacity

Different materials store different amounts of heat energy.

Water takes about 30 times longer to heat than gold, meaning it stores about 30 times more calories.

SPECIFIC HEAT (C)

-The amount of heat it takes to raise the

 temp of 1 g of a substance $1^{\circ} \mathrm{C}$.- Water has a high specific heat of $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ Higher $\underline{C}=$ slower heating $=$ takes more energy (J)

Specific Heats of Various Materials

ENERGY EQUATION

$q=m C \Delta T$

-q = Heat (joules)

- m = mass (grams)
- C = Specific Heat ($\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$)
- $\Delta T=$ change in temp $\left(T_{\text {final }}-T_{\text {inital }}\right)$

PRACTICE PROBLEM

- Heat is added to a beaker containing 55.0 g of water at $52^{\circ} \mathrm{C}$ is boiled at $100.0^{\circ} \mathrm{C}$. How much heat is needed?

CALCULATING SPECIFIC HEAT

1. The temperature of a piece of copper with a mass of 95.4 g increases from $25.0^{\circ} \mathrm{C}$ to $48.0^{\circ} \mathrm{C}$ when it absorbs 849 J . What is the specific heat of the metal?
2. When 435 J of heat is added to 3.4 g of olive oil at $21.0^{\circ} \mathrm{C}$ the temperature increases to $85.0^{\circ} \mathrm{C}$. What is the specific heat of the oil?

CALORIMETRY

If T drops in system: $\Delta T \& q$ will be negative : exothermic

If T rises in system: $\Delta T \& q$ will be positive : endothermic

CALORIMETRY

1. If dissolving a solid lowers the temp of 100 ml of water $3.5^{\circ} \mathrm{C}$, how much energy was released?
2. If 335 g of water at $65.5^{\circ} \mathrm{C}$ loses 9750 J of heat, what is the final temp of the water?

ENERGY PRACTICE...

1. If heat is released by a chemical system, an equal amount of heat is \qquad
a. Absorbed by the surroundings
b. Released by the surroundings
c. Absorbed by the universe
d. Released by the universe
2. Which element has 8 valence electrons?
a. Potassium
b. Oxygen
c. Helium
d. Neon

BELL RINGER - PACKET, CALCULATORS

1. Draw the graph for exothermic and draw a line showing the addition of a catalyst.
2. Which of the following is exothermic?
a) Freezing of water
b) Melting of iron
c) Vaporization of ethanol
d) Sublimation of iodine

WHAT DOES THIS SHOW??

MATH EXAMPLES

1. How much energy is needed to change the temperature of 4.56 g water from $35.0^{\circ} \mathrm{C}$ to $85.0^{\circ} \mathrm{C}$?
2. How much energy is needed to change 2.5 g of ice at $13.0^{\circ} \mathrm{C}$ to steam at $112.0^{\circ} \mathrm{C}$?
3. How much energy is needed to boil 53.7 g of water?
4. How much energy is needed to raise the temperature of 100.0 g ice from $-50.0^{\circ} \mathrm{C}$ to $-10.0^{\circ} \mathrm{C}$?

BELL RINGER - YELLOW PACKET, CALCULATOR

1. 6.00 g of gold was heated from 20.0 C to 22.0 C. How much heat was applied?
2. How much energy is absorbed when 4.56 g of ice melts?
