Review Practice Problems:

(1) How many atoms of each element are there in each compound?

a)
$$Ca(OH)_2$$
: $Ca = 1 , O = 2 , H = 2$

b)
$$C_3H_8O$$
: $C = ___, H = ___, O = ___$

c)
$$(NH_4)_2HPO_4: N=__ , H=__ P=__ , O=__$$

d)
$$HC_2H_3O_2 : H=__, C=__, O=__$$

Review Notes 10.1 Balancing Chemical Equations

Why balance a chemical equation?

- Law of Conservation of Matter: "Matter is neither
 created nor <u>destroyed</u> in chemical reactions..."
 - During a chemical reaction, atoms are either:
 - ✓ joined,
 - ✓ <u>separated</u>,
 - ✓ or rearranged.
- •The <u>number</u> and <u>type</u> of each atom stays the same.

How do you balance a chemical equation?

Use **COEFFICIENTS!!**

Coefficients go in front of a formula.

Practice Problems: Count the atoms:

(a)
$$3 \text{ Ca}(\text{NO}_3)_2$$
 $\text{Ca} = 3 \text{ N} = 6 \text{ O} = 18$

(b)
$$2(NH_4)_3PO_4$$
 $N = 6$ $H = 24$ $P = 2$ $O = 8$

Rules for Balancing Chemical Equations

(1) NEVER change a subscript!!

$$2 H_2 + O$$

Example:
$$2 H_2 + O_2 \rightarrow 2 H_2 O_2$$

To balance oxygen, you cannot change water's formula to______

(2) **NEVER** place the coefficient in the <u>middle</u>!!

Example:
$$2A1 + N_2 \rightarrow 2A1N$$

$$N_2$$

$$\rightarrow$$
 $^{\prime}$

To balance nitrogen, you cannot put a 2 in the middle to make

(3) REDUCE coefficients!!

Example:
$$4H_2 + 2O_2 \rightarrow 4H_2O$$
 can be reduced to...

$$2H_2 + 1O_2 \rightarrow 2H_2O$$

Balancing Equations: Step-by-Step

- 1. List elements.
- 2. Count atoms.
- 3. Balance using **coefficients**!
 - Go left to right.
 - Do oxygen and hydrogen last.

DO NOT CHANGE THE FORMULAS!!! NO subscripts can be altered!!

Review Notes 10.1 pt.2

Ch 10.1 Review Notes

- Chemical equations give information in two major areas:
 - 1. **Products** Reactants
 - Amounts ...if it is a balanced equation!

Example of a Balanced Chemical Equation:

$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_{2}O_{(g)} + H_{H} + H_{H}$$

Hydrogen reacts with oxygen in a 2 : 1 ratio.

Coefficients are **RATIOS** of particles: molecules, formula units, atoms, ions or... moles

Common Symbols used in Chemical Equations

```
+ = used to separate chemicals
  → = "yields" "forms" "produces"
   = <u>reversible</u> reaction (like a rechargeable battery)
(s)(l)(g)(aq) = phase of matter: (solid, liquid, gas, or "aqueous")
  \stackrel{\triangle}{\longrightarrow} = <u>heat</u> supplied to the reaction
 MnO<sub>2</sub> = a catalyst: <u>speeds</u> <u>up</u> the reaction.
   = gas given off as a product
   = <u>solid</u> precipitate produced
```

Balancing Equations: Practice!

__(NH₄)₂CO₃
$$\rightarrow$$
 _2_NH₃ + __CO₂ + __H₂O
_2_Al + _3_CuSO₄ \rightarrow __Al₂(SO₄)₃ + _3_Cu
_2_Li + _2_H₂O \rightarrow _2_LiOH + __H₂
_2_Fe(OH)₃ \rightarrow __Fe₂O₃ + _3_H₂O

Rules for Balancing Chemical Equations

(4) Get rid of any <u>fractions</u>!

Example:
$$2 \times (1H_2 + \frac{1}{2}O_2 \rightarrow 1H_2O)$$
 changes to...
$$\underline{2} H_2 + \underline{1} O_2 \rightarrow \underline{2} H_2O$$

Decoding Common Chemical Equation Symbols

Practice Problems: Describe the following reactions using complete sentences.

a) NaHCO_{3 (s)} + HCl (aq)
$$\rightarrow$$
 NaCl (aq) + H₂O (l) + CO₂

Solid sodium bicarbonate and aqueous hydrochloric acid react to yield aqueous sodium chloride plus water and carbon dioxide gas.

- b) H_2SO_4 (aq) $+ BaCl_2$ (aq) $\rightarrow HCl_4$ (aq) $+ BaSO_4$ (s) Aqueous sulfuric acid plus aqueous barium chloride react to yield aqueous hydrochloric acid plus solid barium sulfate.
- c) Sodium plus bromine, when heated, reacts to produce solid sodium bromide.

$$Na_{(s)} + Br_{2(1)} \xrightarrow{\triangle} NaBr_{(s)}$$

Review Notes 10.2 pt.1 Types of Reactions

Five General Types of Reactions

1) **Decomposition**:

• Breaks apart: ONE reactant \rightarrow 2 or more products

General Form:
$$AX \rightarrow A + X$$

Examples:
$$H_2O \rightarrow \underline{H_2} + \underline{O_2}$$

$$KClO_3 \rightarrow \underline{KCl} + \underline{O_2}$$

Types of Decomposition

- CO_3^{2} a) carbonates \rightarrow metallic ox
- a) carbonates \rightarrow metallic oxide + CO₂
- ClO₃¹b) chlorate
- b) chlorates \rightarrow metallic chloride + O_2 OH¹⁻
- c) hydroxides \rightarrow metallic oxide + H₂O
- d) oxyacids \rightarrow nonmetal oxide + H₂O
- e) binary compounds \rightarrow 2 elements
- To write the formulas:
 - Look up the <u>charges</u> of ions.
 - Make compound <u>neutral</u>!!
 - Balance <u>LAST!!</u>

- $\begin{array}{c}
 \text{CaCO}_{3} \xrightarrow{\text{CaO}} + \text{CO}_{2} \\
 \text{Na}^{1+} \text{Cl}^{1-}
 \end{array}$
- $NaClO_3 \rightarrow \frac{NaCl}{Mg^{2+}} + \frac{O_2}{O^{2-}}$
- $Mg(OH)_2 \rightarrow MgO + H_2O$
- $H_2SO_4 \rightarrow SO_3 + H_2O$
 - $NaCl \rightarrow Na_+ Cl_2$

Review Notes 10.2 pt.2 Types of Reactions

Five General Types of Reactions (Continued)

2) **Synthesis**

- Combines: 2 or more reactants → ONE product
 - Decomposition in reverse!

General Form:
$$A + X \rightarrow AX$$

Al³⁺ Cl¹⁻

Examples: Al + Cl₂ \rightarrow AlCl₃

2 elements \rightarrow binary compound

Pb²⁺ O²⁻ Pb²⁺ OH-

PbO + H₂O \rightarrow Pb(OH)₂

metallic oxide + water \rightarrow hydroxide

General Types of Reactions (Continued)

3) **Combustion**

- A reaction with $\frac{O_2}{O_2}$!!!
 - -General Form: $\underline{A} + \underline{O_2} \rightarrow \underline{\text{metallic oxide}}$

- The products are <u>always</u> ... CO_2 + H_2O
- This reaction is too easy!! Don't miss it!

General Form:
$$C_x H_v + O_2 \rightarrow \underline{CO_2} + \underline{H_2O}$$

Review Notes 10.2 pt.3 Types of Reactions

General Types of Reactions (Continued)

4) Single Replacement:

• A more reactive element "replaces" a less reactive element.

Single Replacement Reactions

Examples:

$$NaCl + F_2 \rightarrow NaF + Cl_2$$

$$FeCl_2 + K \rightarrow \underline{KCl} + \underline{Fe}$$

$$HCl + Zn \rightarrow ZnCl_2 + H_2$$

$$HC1 + Au \rightarrow no rxn$$

$$H_2O + Na \rightarrow NaOH + H_2$$
 $H(OH)$

$$H_2O + Hg \rightarrow no rxn$$

$$AgNO_3 + Cu \rightarrow CuNO_3 + Ag$$

Review Notes 10.2 pt.4 Types of Reactions

General Types of Reactions (Continued)

5) **Double Replacement:**

- Anions switch places!
- Two aqueous ionic compounds → two
 - Has a *driving force*:
 - Insoluble = a solid (precipitate)
 - Water = a liquid
 - Gas (low weight molecular comp

General Form:
$$AX_{(aq)} \xrightarrow{BY_{(aq)}} AY_{(aq)} + BX_{(s,l,g)}$$

• You will be told if a solid is produced. $Ca^{2+} NO_3^{1-} Ag^{1+} Cl^{1-}$

Examples:
$$CaCl_{2 (aq)} + AgNO_{3 (aq)} \rightarrow \underline{Ca(NO_3)_{2 (aq)}} + \underline{AgCl_{(s)}}$$

Writing Net Ionic Equations for Double Replacement Reactions

- A <u>"net ionic equation"</u> only shows the <u>ions</u> that were used to make the precipitate.
- Some ions were always dissolved in water. These are called "

 spectator ions". (They don't do anything, so we can ignore them.)

Example: $CaCl_{2 (aq)} + 2AgNO_{3 (aq)} \rightarrow Ca(NO_3)_{2 (aq)} + 2AgCl_{(s)}$

Ionic Equation Written as Ions Dissolved in Water:

$$C_{3}^{2}$$
 (aq) + C_{3}^{2} (aq) + C_{3}^{2}

• Cancel out the spectator ions, and you are left with the Net Ionic Equation!

$$2Cl_{(aq)}^{-}$$
 + $2Ag_{(aq)}^{+}$ \rightarrow $2AgCl_{(s)}$