Review Notes 6.1 - 6.2

1	Periodic l'able												0 Z He					
2	э Li	4 Be		0	f t	he	E	le	m	en	ts		s B	€ C	7 N	8	9 F	10 Ne
3	11 Na	1Z Mg	IIIB	IVB	٧B	ИВ	МІВ		— ин -		• IB	18	13 Al	14 Si	15 P	16 S	17 CI	18 A r
4	19 K	zo Ca	Z1 Sc	zz Ti	23 V	Z4 Cr	25 Mn	ze Fe	Z7 Co	zs Ni	29 С ш	30 Zn	Э1 Ga	32 Ge	33 As	Э4 Se	≆ Br	∋∈ Kr
5	Э7 Rb	∋≋ Sr	39 Y	40 Zr	41 Nb	4Z Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	sı Sb	sz Te	53 I	54 Xe
6	SS Cs	ss Ba	57 * La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	≋o Hg	≋1 TI	82 Pb	83 Bi	84 Po	≋ At	≋ Rn
7	87 Fr	88 Ra	89 + Ac	104 Rtf	105 Ha	106 106	107 107	108 108	109 109	110 110								

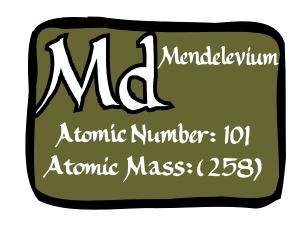
٠	Lanthanide
	Senes

+ Actinide Series

s≋ Ce			61 Pm	ह्य Sm			the second of the second of	the state of the s	the second second second			70 Yb	
90 Th	No. 40 (47)	92 U	99 N p	T-100-00-00-00-00-00-00-00-00-00-00-00-00	T-100 - 100	7.57.000	100 C 100 C 100 C	100000000000000000000000000000000000000	100000000000000000000000000000000000000	A Common Profession	Md	 Company of the company 	1© Lr

Pre-periodic table chemistry ...

- ...was a mess!!!
- No organization of elements.
- Imagine going to a grocery store with no organization!!
- Difficult to find information.
- Chemistry didn't make sense.


Dmitri Mendeleev: Father of the Periodic Table

In 1869 he published a table of the elements

HOW THIS WORKED...

- 70 known elements.
- Put elements in **rows** by increasing **atomic mass**.
- Put elements in columns
 by the way they reacted.

SOME PROBLEMS...

- He left **blank spaces** for undiscovered elements.
- Some elements didn't fit, he said their weight must be wrong.

He <u>predicted</u> the physical properties of three elements that were yet <u>unknown</u>.

The discovery of these elements between 1874 and 1885...

plus

the fact that his predictions for **Sc**, **Ga**, and **Ge** were close to the actual values...

his table was generally accepted.

Henry Moseley

In 1913, using X-rays,

<u>determined the actual nuclear charge</u>

= **atomic number**.

Rearranged the elements in order of increasing atomic number

The Current Periodic Table

Elements are put in rows by increasing **ATOMIC NUMBER!!**

Elements in the same group have similar chemical & physical properties!!

3 classes of elements

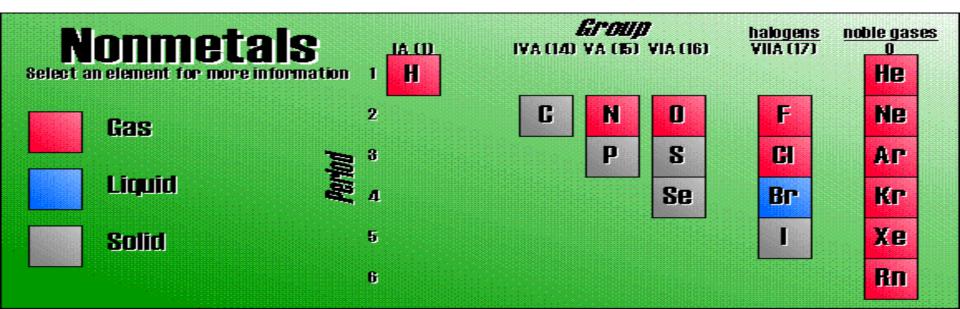
1. Metals: located to the <u>left</u> of the zig-zag line


Properties of Metals

- All Solids!!! Except one which is it??
- shiny surface

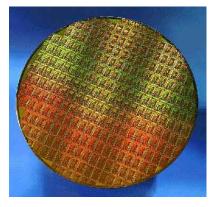
— <u>ductile</u> (can be drawn it into a thin wire)

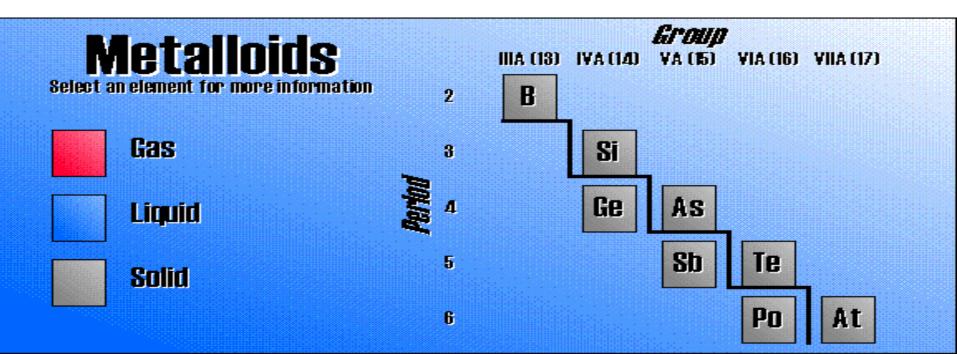
— good <u>conductors</u> (heat/electricity travels through it easily)


3 classes of elements

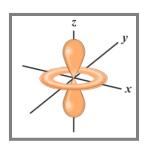
2. Nonmetals: located to the <u>right</u> of the zig-zag line.

Properties of Nonmetals


- <u>dull</u> surface
- brittle
- good <u>insulators</u> (or poor conductors)

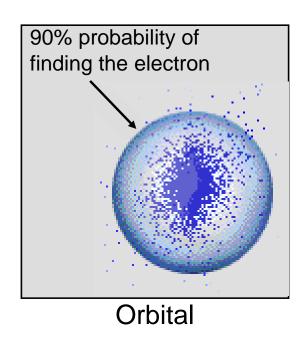

3 classes of elements

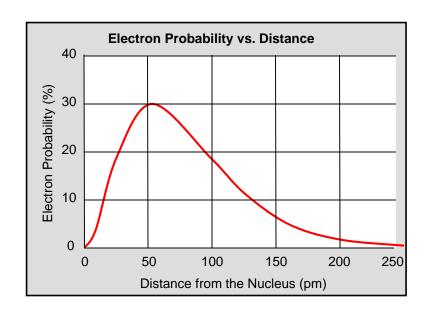
- 3. Metalloids (8): along the zig-zag line.
 - Divide metals and nonmetals.
 - Similar properties to nonmetals.
 - *EXCEPT* good electrical conductors.

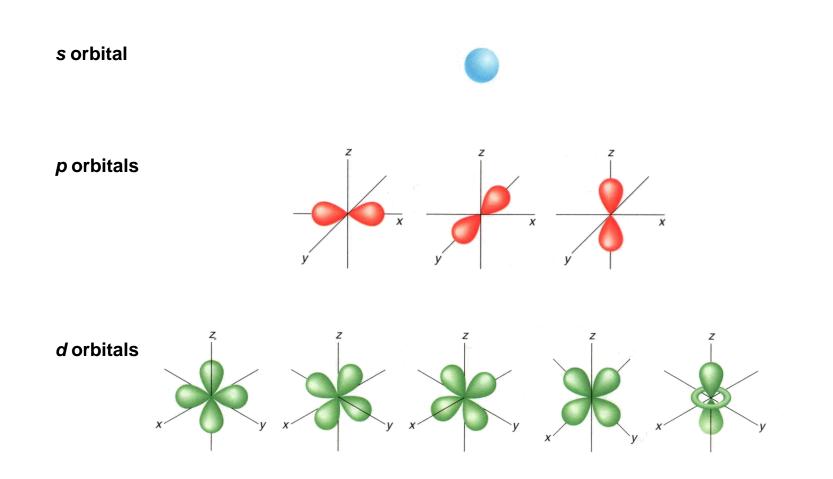

Example: silicon (Used in computer chips)

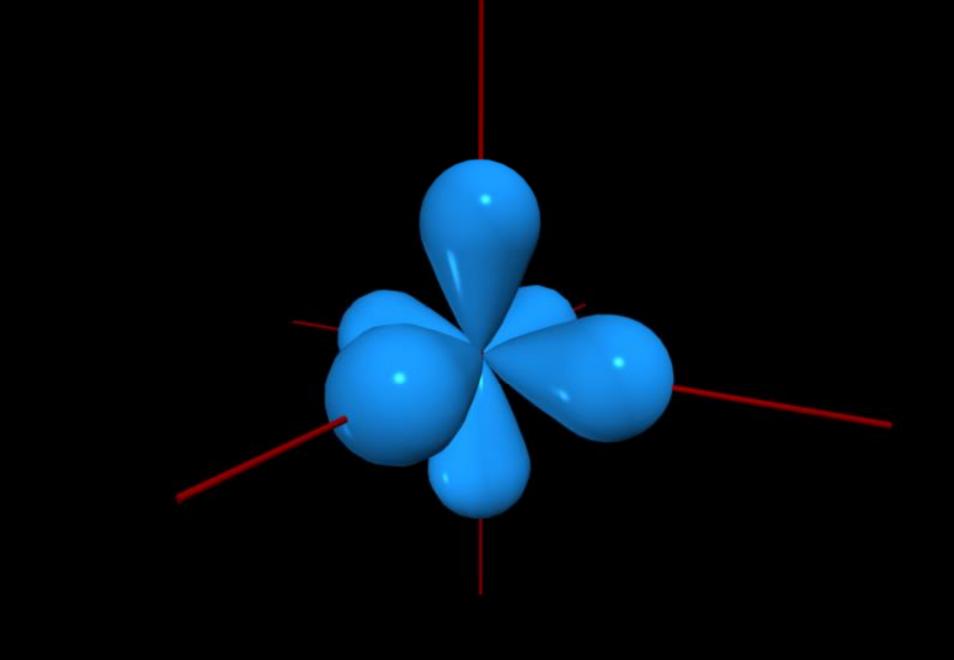
semiconductors

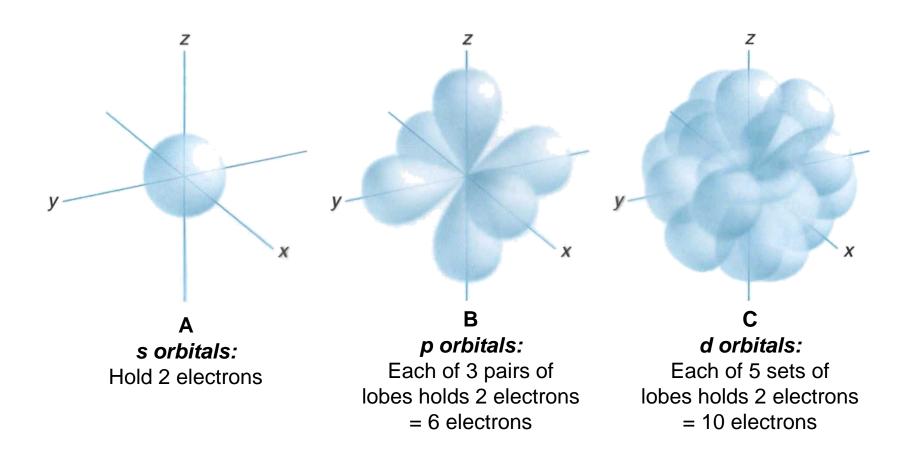
Review Notes 5.3 & 6.2 Electron Configuration & Orbitals


 $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^6\dots$

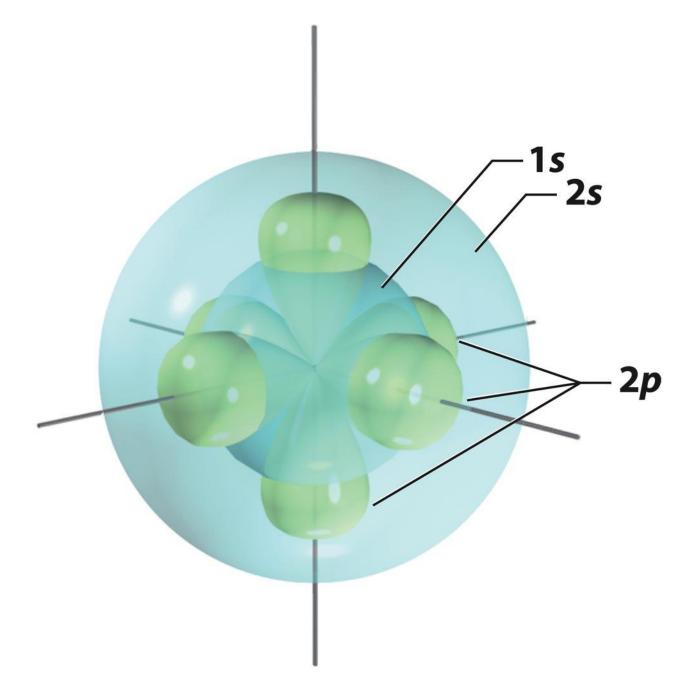



Quantum Mechanical Model of the Atom

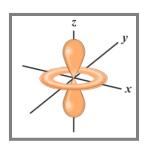

- Orbital ("electron cloud")
 - Region where there is 90% probability of finding an electron



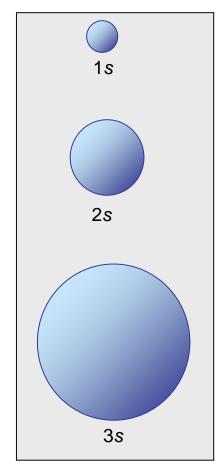
Shapes of s, p, and d-Orbitals

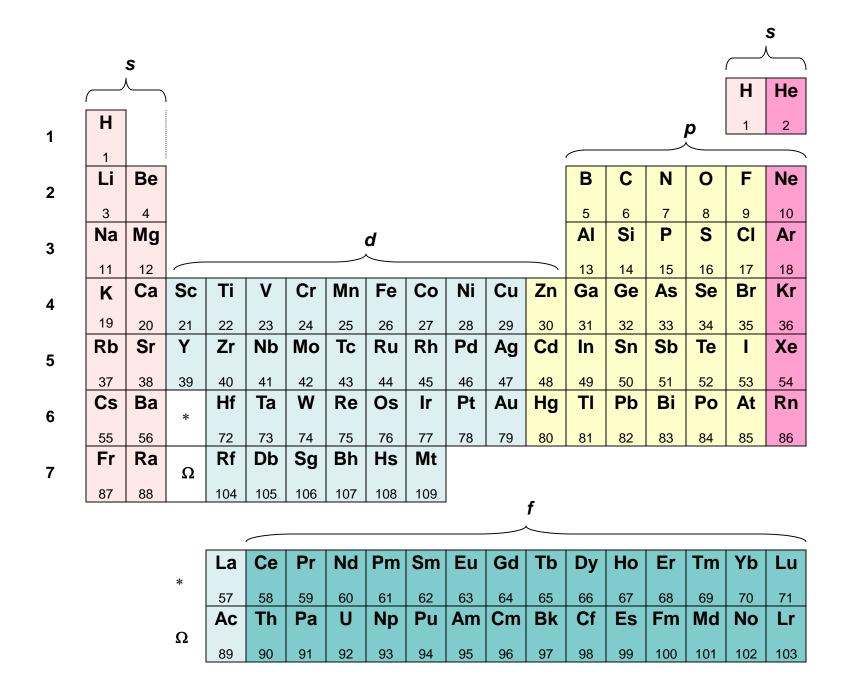


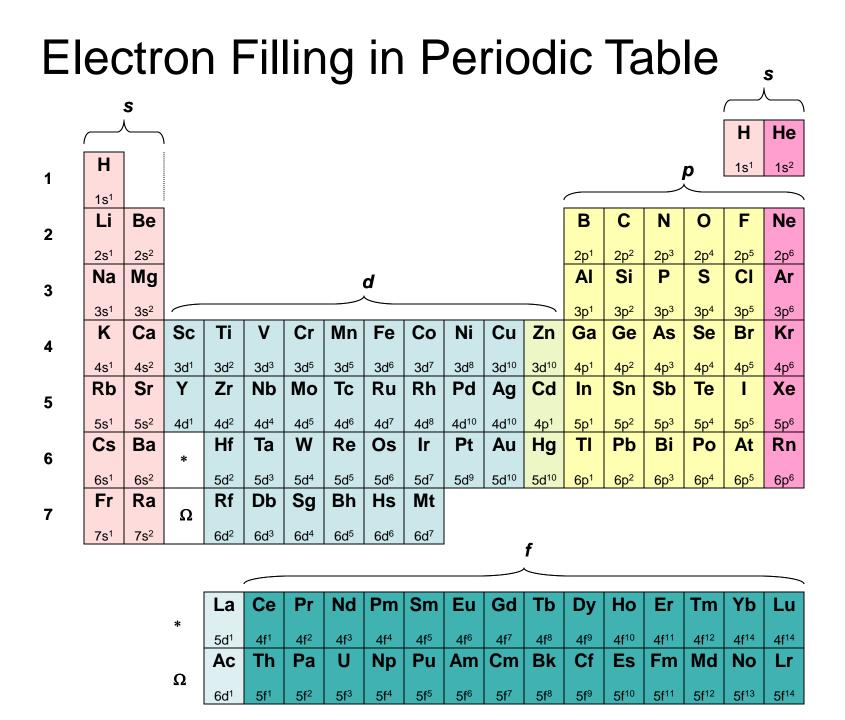
s, p, and d-orbitals



Review Notes 5.3 & 6.2 pt.2 Electron Configuration & Orbitals

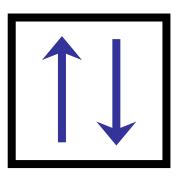

 $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^6\dots$





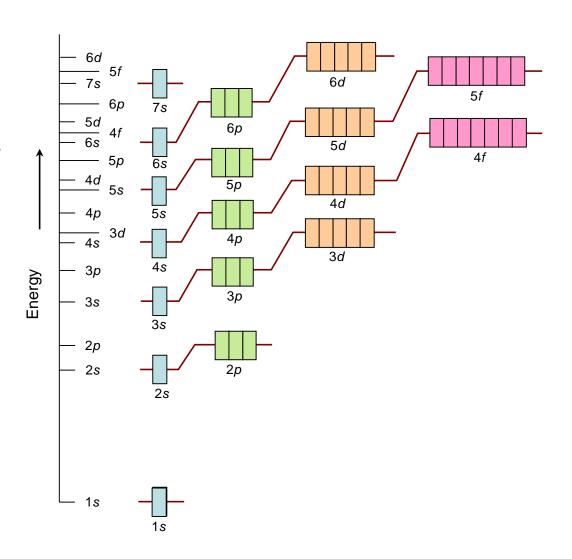
Principal Quantum Number (n)

- Energy level (n)
 - Size of the orbital
- -n = # of sub levels
- $-n^2 = \#$ of orbitals



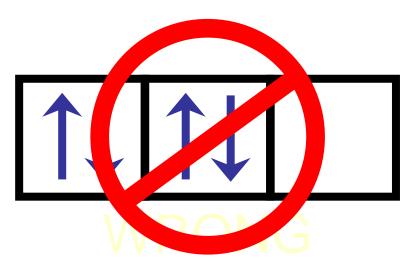
General Rules

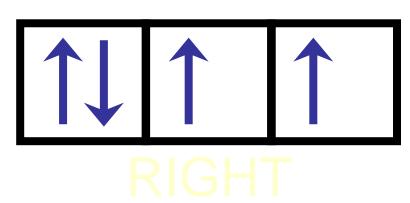
Wolfgang Pauli


- Pauli Exclusion Principle
 - Each orbital can hold TWO electrons with opposite spins.

General Rules

Aufbau Principle

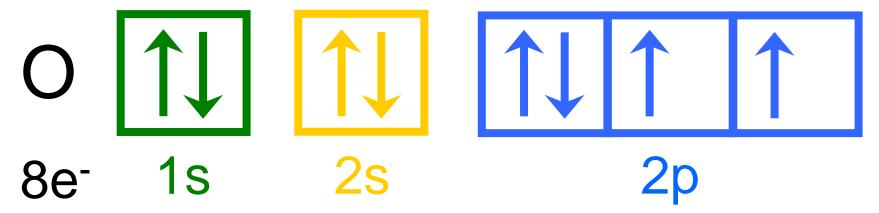

- Electrons fill the lowest energy orbitals first.
- "Lazy Tenant Rule"



General Rules

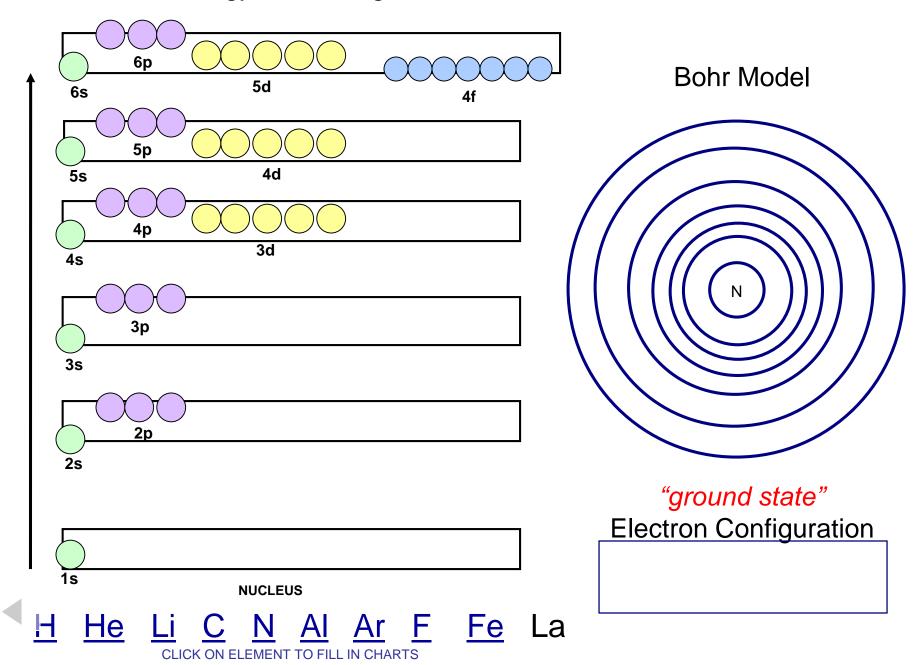
Hund's Rule

- In a sublevel: one electron per orbital before doubling up.
- "Empty Bus Seat Rule"



Electron Configurations

			Orbital Filling	Electron
Element	1s	2s	2p _x 2p _y 2p _z 3s	
н	↑			1s¹
He	↑ ↓			1s²
Li	$\uparrow \downarrow$	↑	Dlate_	TRECT Llund's ^{22s}
С	↑ ↓	↑ ↓	1	1s ² 2s ² 2p ²
N	↑ ↓	↑ ↓	↑ ↑ ↑	1s ² 2s ² 2p ³
О	↑ ↓	↑ ↓	$\uparrow\downarrow \qquad \uparrow \qquad \uparrow$	1s²2s²2p⁴
F	$\uparrow \downarrow$	↑ ↓	$\uparrow\downarrow$ \uparrow \downarrow \uparrow	1s ² 2s ² 2p ⁵
Ne	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow\downarrow \uparrow \downarrow \uparrow \downarrow$	1s ² 2s ² 2p ⁶
Na	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow\downarrow \uparrow\downarrow \uparrow\downarrow$	1s ² 2s ² 2p ⁶ 3s ¹


Notation

Orbital Diagram

Electron Configuration

$$1s^2 2s^2 2p^4$$

CLICK ON ELEMENT TO FILL IN CHARTS

Hydrogen

Bohr Model

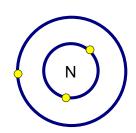
Electron Configuration

1s¹

CLICK ON ELEMENT TO FILL IN CHARTS

Helium

Bohr Model

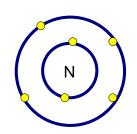

Electron Configuration

1s²

CLICK ON ELEMENT TO FILL IN CHARTS

Lithium

Bohr Model

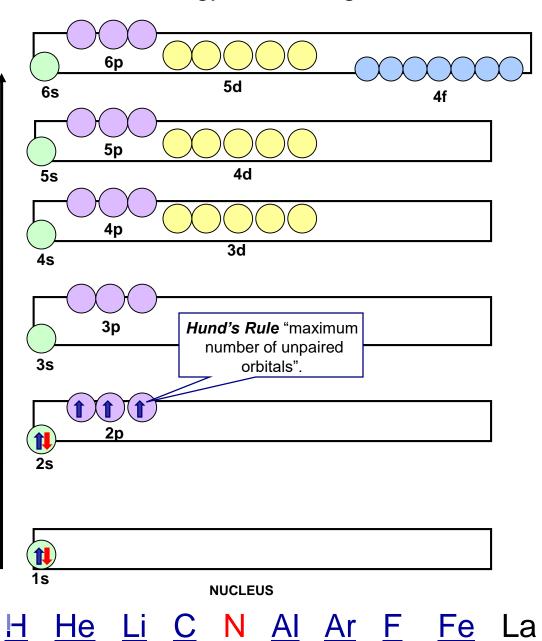


Electron Configuration

 $1s^22s^1$

Carbon

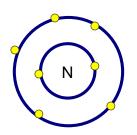
Bohr Model


Electron Configuration

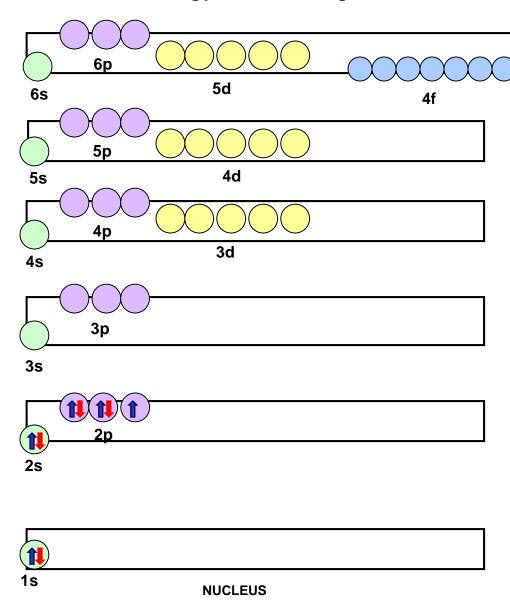
 $1s^22s^22p^2$

Arbitrary Energy Scale

H He Li C N Al Ar F Fe La


NUCLEUS

CLICK ON ELEMENT TO FILL IN CHARTS

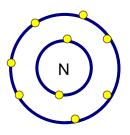

Arbitrary Energy Scale

Nitrogen Bohr Model

Electron Configuration

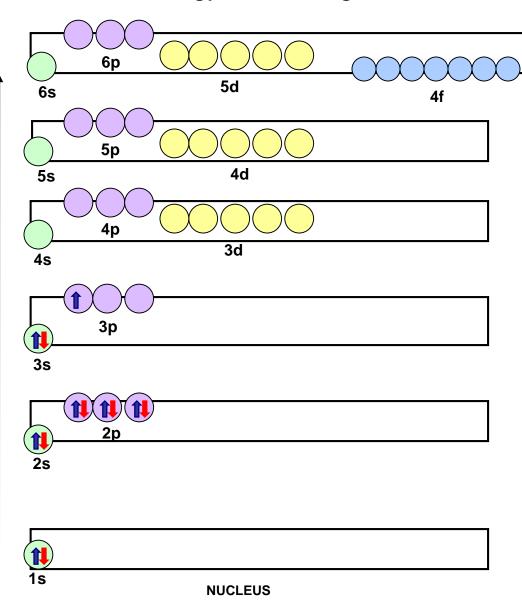
 $1s^22s^22p^3$

CLICK ON ELEMENT TO FILL IN CHARTS


Fe

Arbitrary Energy Scale

He

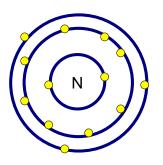

Fluorine

Bohr Model

Electron Configuration

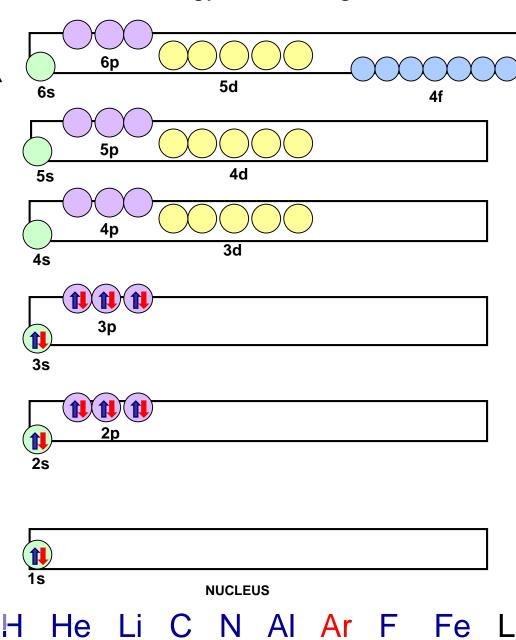
 $1s^22s^22p^5$

CLICK ON ELEMENT TO FILL IN CHARTS


Fe

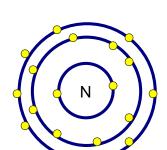
Arbitrary Energy Scale

He


Aluminum

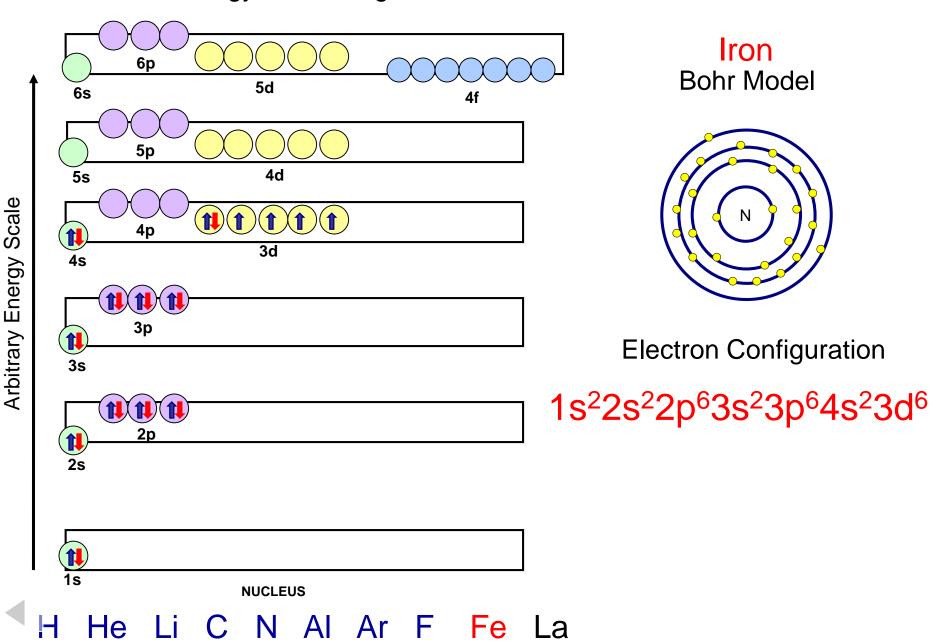
Bohr Model

Electron Configuration

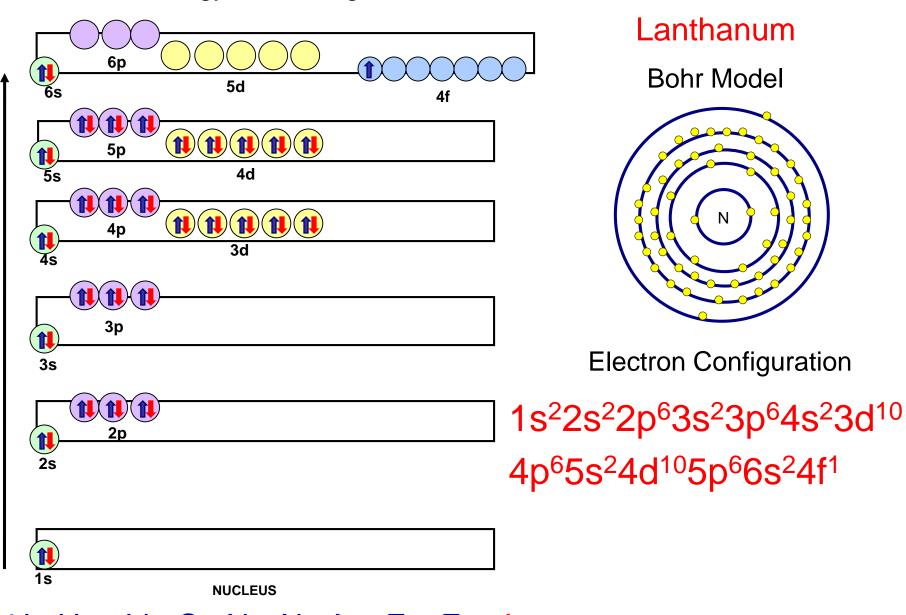

1s²2s²2p⁶3s²3p¹

CLICK ON ELEMENT TO FILL IN CHARTS

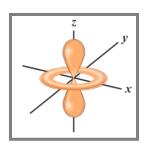
Arbitrary Energy Scale


Argon
Bohr Model

Electron Configuration

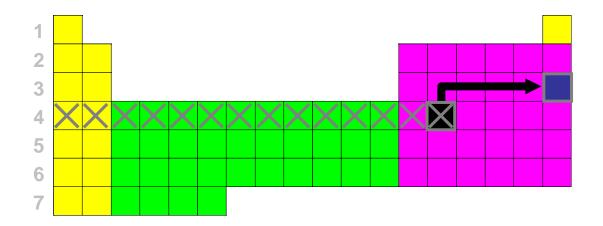

 $1s^22s^22p^63s^23p^6$

CLICK ON ELEMENT TO FILL IN CHARTS


CLICK ON ELEMENT TO FILL IN CHARTS

Arbitrary Energy Scale

Review Notes 5.3 & 6.2 (pt.3) Electron Configuration & Orbitals


 $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^6\dots$

Shorthand Configuration

Example - Germanium

Shorthand Configuration

Element symbol

Ca

V

F

Ag

I

Xe

Fe

Sg

Electron configuration

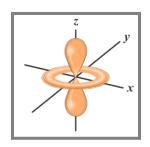
 $[Ar] 4s^2$

[Ar] $4s^2 3d^3$

[He] $2s^2 2p^5$

[Kr] 5s² 4d⁹

[Kr] $5s^2 4d^{10} 5p^5$


[Kr] $5s^2 4d^{10} 5p^6$

[He] 25/27/10/4355-33/10/64s²3/10/6

[Rn] $7s^2 5f^{14} 6d^4$

Review Notes 5.3 & 6.2 (pt.4) Electron Configuration & Orbitals

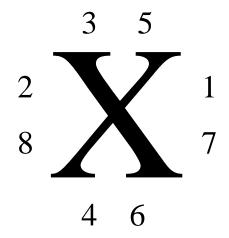
 $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^6\dots$

Valence Electrons

What are "valence electrons"?

- Electrons in the <u>outer</u> <u>most</u> energy level.
- "_s" electrons and "_p" electrons only.

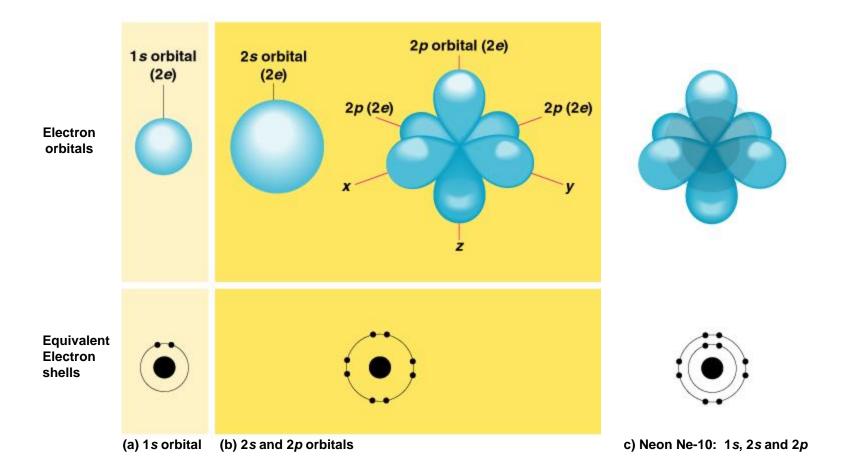
Counting Valence Electrons

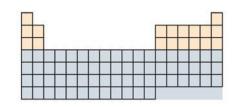

Group A # = number of valence electrons

(exception Helium = $\underline{2}$ e⁻'s)

Examples: Ca = $\frac{2}{2}$ e⁻'s Nitrogen = $\frac{5}{2}$ e⁻'s Argon = $\frac{8}{2}$ e⁻'s

ALL <u>d-block and f-block</u> = <u>2</u> valence e⁻'s


Drawing Valence Electrons



Examples: Nitrogen =
$$\bullet N^{\bullet}$$
 Hydrogen = H^{\bullet}

Carbon =
$$\bullet \overset{\bullet}{\mathbf{C}} \bullet$$

Electron Orbitals:

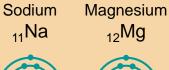
Electron Configurations

Hydrogen ₁H

of First 18 Elements:

Helium ₂He

Neon


₁₀Ne

Lithium ₃Li

Beryllium ₄Be

Boron ₅B

Aluminum

13AI

Silicon

Carbon

Nitrogen

 $_{7}N$

Sulfur

Oxygen

 O_8

Fluorine

₉F

Phosphorous

₁₅P

Chlorine

17CI

Electron Dot Diagrams

			Gro	oup			
11A	22	3A8	41/4	5145	6146	7\A	8 A 8
H•							He
Li•	•Be•	•B•	• C •	• N •	•0•	• F •	:Ne:
Na•	•Mg •	• Al•	•Si•	• P•	•\$•	:CI-	: Ar:
K•	•Ca•	•Ga•	•Ge	• As •	•Se•	:Br•	:Kr:
s¹	S ²	s²p¹	s ² p ²	s ² p ³	s ² p ⁴	s² p ⁵	s ² p ⁶

⁼ valence electron

Review Notes 6.3

1	1 H	НΑ]		_	_	di					e	III A	IVA	VA	МА	MLA	0 2 He
2	∍ Li	4 Be		0	I T	ne	E	.le	m	en	ts		s B	C	, N	8	9 F	Ne
3	Na.	1Z Mg	ШВ	IVB	۷B	ИВ	МІВ		— VIII -		• 18	18	13 Al	14 Si	15 P	16 S	17 Cl	18 A r
4	19 K	²⁰ Ca	Z1 Sc	zz Ti	23 V	Z4 Cr	25 Mn	ze Fe	27 Co	28 Ni	29 C u	30 Zn	31 Ga	32 Ge	33 As	Э4 Se	35 Br	36 Kr
5	37 Rb	∋≋ Sr	39 Y	40 Zr	41 Nb	4Z Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	St Sb	52 Te	59 I	54 Xe
6	55 Cs	56 Ba	57 * La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	⊗ Hg	≋ı Ti	82 Pb	83 Bi	84 Po	≋s At	≋ Rn
7	87 Fr	≋≋ Ra	89 + Ac	104 Rdf	105 Ha	106 106	107 107	108 108	109 109	110 110			sI		0.000		<u> </u>	

٠	Lanthanide
	Senes

+ Actinide Series

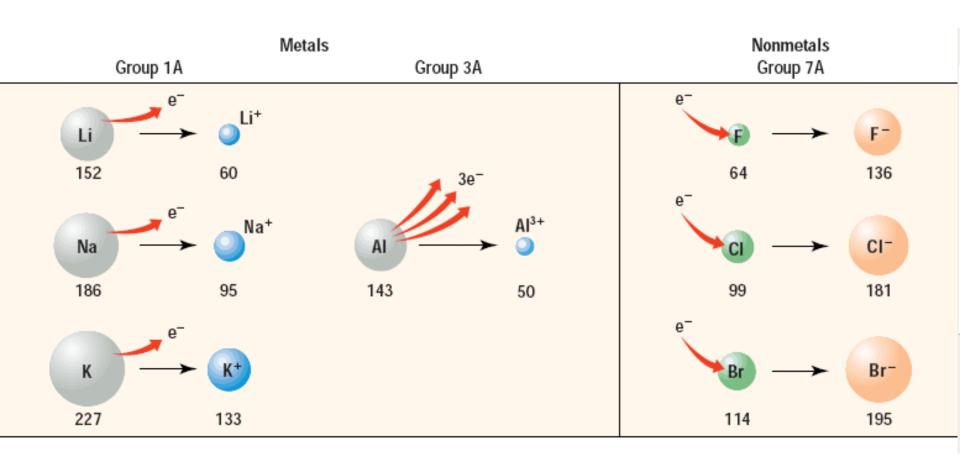
V 10 10 10 10 10 10 10 10 10 10 10 10 10	The second second	Nd	the second of the second	sm Sm		Gd	ТЬ	Dy	the second second second	100000000000000000000000000000000000000		70 Yb	
90 Th	91 Pa	To 10 (1977)	4.00 (2004)	4.50 (4.00) (4.00)	A 1 (1) (1) (1) (1)	40.000	7.00	The second second second	99 Es	A Common Profession	147 x 2 x 127 x 2	102 No	18 Lr

Trends in the Periodic Table

Atomic Size (Atomic Radius)

(See Fig. 14.10)

- Moving Down a Group= the size of the atoms <u>increases</u>
 - Why? You are adding <u>more</u> of electrons to higher and higher energy levels (farther and farther out.)
- Moving Across a Period= the size generally _____ decreases
 - Why? You are adding more e⁻ and p⁺ to the same energy level. This causes more <u>attraction</u> of opposite charges and it <u>pulls</u> the electron cloud inward.


Trends in the Periodic Table Atomic Size vs. Ion Size

(See Fig. 14.8)

•	$Cation = (\underline{+}) ch$	arged atom	created by _	removing	e-'s.
	—Cations are	smaller	than the c	riginal atom	•
	— Metals	_ generally	form cations	•	
•	Anion = () cha	arged atom	created by	adding	e-'s.
	—Anions are	larger	than the orig	inal atom.	
	Nonmetals	genera	ally form anio	ns.	

Trends in the Periodic Table

Atomic Size vs. Ion Size

Determining the Ion Formed

- Atoms try to achieve a <u>noble</u> <u>gas</u> configuration when forming an ion. (This makes them more stable.)
 - —Locate the nearest noble gas and count how many "places" it is away, but remember that you can skip over the d-block!!
 - This amount will be the same as the # of e-'s either gained or lost by the atom when forming an ion.
- **Practice Problem:** How many electrons are gained or lost when forming an ion from the following elements?
- a) Magnesium: 2 (gained or lost) b) Iodine: 1 (gained or lost)
- c) Gallium: 3 (gained or lost) d) Boron: 3 (gained or lost)

Review Notes 6.3 pt.2

1	1 H	ПΑ]		_	_	di	_				e	III A	IVA	VA	МΑ	MLA	0 Z He
2	∍ Li	4 Be		0	t t	he	E	le	m	en	ts		s B	C	7 N	8	9 F	Ne
8	11 Na	1Z Mg	IIIB	IVB	VB	ИВ	МІВ		— vIII -		• 1В	1B	13 Al	14 Si	15 P	16 S	17 Cl	18 A r
4	19 K	²⁰ Ca	Z1 Sc	zz Ti	23 V	Z4 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Си	30 Zn	91 Ga	32 Ge	39 As	34 Se	æ Br	36 Kr
5	37 Rb	38 S r	39 Y	4□ Zr	41 Nb	4Z Mo	43 Tc	44 Ru	45 Rh	⁴⁶ Pd	47 Ag	48 Cd	49 In	50 Sn	St Sb	sz Te	59 	S4 Xe
6	SS Cs	5€ Ba	sı • La	72 Hf	79 Ta	74 W	75 Re	76 O s	77 Ir	78 Pt	79 Au	eo Hg	S1 TI	82 Pb	89 Bi	84 Po	≋s At	≋ Rn
7	er Fr	≋≋ Rai	89 + Ac	1□4 Rdf	105 Ha	106 106	107 107	108 108	109 109	110 110								

•	Lanthanide
	Senes

+ Actinide Series

58 Ce		Nd Nd	The second of the second	sz Sm	The second section is a second	and the second second second	and the second second	the second transfer and the	ਰ Ho	and the second second	and the second second second	70 Yb	
50 Th	91 Pa		10 July 2007	NO DATE OF BUILDING	G0000000000000000000000000000000000000	15/12/05/05/05	T-100 NOV	300000000000000000000000000000000000000	99 Es	100 Fm	15 (12 K) 14 W	Constitution (Constitution Constitution Cons	1Œ

Trends in the Periodic Table Ionization Energy

(See Fig. 6.16 & 6.17)

- Ionization energy is the energy required to <u>remove</u> the outer most electron in an atom.
- Moving Down a Group= <u>decreases</u> (less energy is needed)
 - —Why? You are trying to remove an electron that is farther and farther out (for larger and larger atoms). These e-'s are not as <u>attracted</u> to the nucleus.
 - In general, the larger the atom, the <u>less</u> attracted it is to its e⁻'s.

Trends in the Periodic Table Ionization Energy

- Moving Across a Period= generally increases
 - Why? Moving across a period takes us from metals to nonmetals. More ionization energy is needed for nonmetals compared to metals.
 - —Also, since metals generally form <u>cations</u>, it won't take as much energy to remove it's outer most electron.
 - Remember that as you move across the period, the atoms get
 smaller and therefore more attracted to the electrons.

Trends in the Periodic Table "Successive Ionization Energies"

(See Table 6.2)

- "Successive Ionization Energies" means the energy required to remove a 2^{nd} or a 3^{rd} electron from an atom.
 - —Removing more and more e-'s requires <u>more</u> and <u>more</u> energy.
 - —Why? The remaining e-'s are more <u>tightly</u> bound to the nucleus.

Trends in the Periodic Table

Electronegativity

(See Fig 6.18)

- Electronegativity is a relative value (from 0-4.0) which compares how much an atom is attracted to the e-'s in a chemical bond.
- Moving Down a Group= generally <u>decreases</u> (less attraction)
 - —Why? The bonded electron is farther and farther out. These e-'s will not be as attracted to the larger and larger atoms.

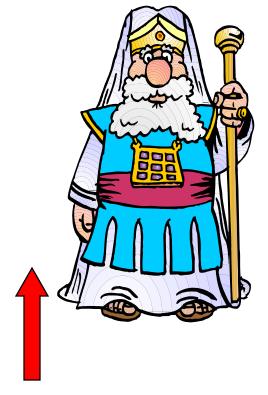
Trends in the Periodic Table

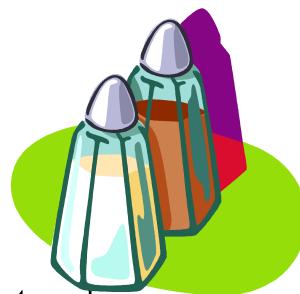

Electronegativity

•	Moving Across a Period= generallyincreases
	 — Why? Again, the atoms are getting <u>smaller</u> so they are <u>more</u> attracted to the bonding electrons.
	 Also, moving across a period takes us from metals to nonmetals. Since nonmetals generally form <u>anions</u>, they tend to <u>gain</u> e-'s anyway, and this makes them <u>highly</u> attracted to e-'s when forming a chemical bond.
	 Noble gases are not listed in Fig 6-18 since they do not form compounds

Periodic Table Geography

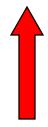
Halogens


- Very **reactive**, volatile, **diatomic**, nonmetals
- Always **found combined** with other element in nature .


Noble Gases

- VERY unreactive, monatomic gases
- Have a **full valence** shell.

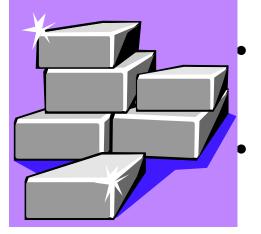
Alkali Metals


- Very reactive metals (solids) with air and water, always combined with something else in nature (like in salt).
- •Soft enough to cut with a butter knife

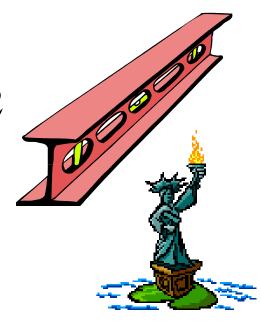
Alkaline Earth Metals

- •Reactive metals (solids) that are always combined with nonmetals in nature.
- •Several of these elements are important mineral nutrients (such as Mg and Ca
- •Also, used used in batteries

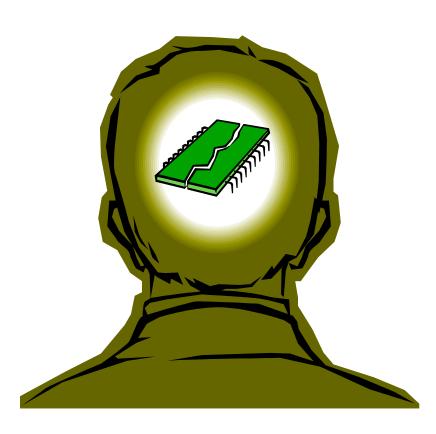
Transition Metals


Transition Metals

• Elements in groups 3-12


All solids except Mercury

Less reactive harder metals

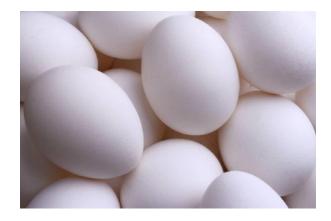

Includes metals used in jewelry and construction.

Metals used "as metal."

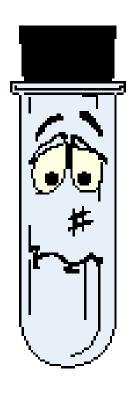
Carbon Family

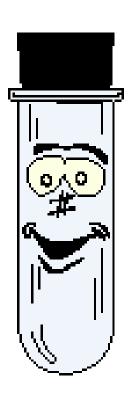
- Elements in group 14
- Contains elements important to life and computers.
- Carbon is the basis for an **entire branch** of chemistry.
- Silicon and Germanium are important semiconductors.

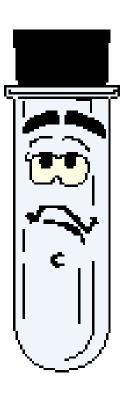
Nitrogen Family



- Elements in group 15
- Nitrogen makes up over 80% of the atmosphere.
- Nitrogen and phosphorus are both important in living things.
- The red stuff on the tip of matches is phosphorus.


Oxygen Family or Chalcogens


- Elements in group 16
- Oxygen is necessary for respiration.
- Many things that stink, contain sulfur (rotten eggs, garlic, skunks,etc.)



QUESTIONS

