Review Notes 6.1-6.2

	14												IIIA	1va	vis	vis	vil ${ }^{\text {a }}$	$\frac{0}{\int_{2}^{2} \mathrm{He}}$	
	1																		
1	H	11 A																	
2	3	4											5	5	${ }^{7}$	\%	9	10	
	Li	Be											B	C	N	0	F	Ne	
3	11	12											13	14	15	16	17	18	
	Na	Mig	HIB										A1	Si	P	S	CI	Ar	
4	13	2 Z	21	22	23	24	${ }^{25}$	26	${ }^{27}$	${ }^{28}$	29	50	31	32	33	34	Fs	\%	
	K	Ca	Sc	Ti	v	Cr	Min	Fe	Co	Mi	Cu	$\mathbf{Z n}$	Ga	Ge	A_{5}	Se	Br	$\mathbf{M r}$	
5	37	38	39	40	41	42	43	44	45	45	${ }^{47}$	48	49	≤ 0	51	52	50	54	
	Rb	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	RH	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	
	55	58	5	72	73	74	75	75	77	78	79	180	81	82	83	84	85	56	
6	Cs	Ba	* La	Hf	Ta	W	Re	0_{5}	Ir	Pt	$\mathrm{Au}_{\mathbf{u}}$	Hg	TI	$\mathbf{P b}$	$\mathbf{B i}$	Po	At	Rn	
	ST	\%	\cdots	104	175	106	107	108	109	110									
7	Fr	Ra	+ Ac	Rf	Ha	106	107	108	109	110									

- Lanthanide Senes	Ce	$\stackrel{59}{\mathbf{P r}}$	Nd	$\left\lvert\, \begin{aligned} & 61 \\ & \mathrm{Pm} \end{aligned}\right.$	$\begin{aligned} & 62 \\ & \mathrm{sm} \end{aligned}$	Eu	Gd	Tb	$\mathbf{D y}$	Ho	$\underset{\mathbf{E r}}{\approx \approx}$	$\overline{\mathrm{Tm}}$	$\overline{Y b}$	$\left.\right\|^{71}$
+ Actinide Series	$\begin{gathered} 30 \\ T h \end{gathered}$	Pa	$\begin{array}{\|l} s Z \\ U \end{array}$	$\mathbf{N p}$	$\begin{array}{\|l\|} \hline 94 \\ \mathbf{P u} \\ \hline \end{array}$	$\begin{aligned} & x= \\ & A_{m} \end{aligned}$	$\begin{aligned} & \mathrm{se} \\ & \mathrm{Cm} \end{aligned}$	$\left.\right\|_{B k} ^{37}$	$\underset{\text { Cf }}{58}$	E_{5}	Fmin	$\begin{aligned} & \hline 101 \\ & \text { MId } \end{aligned}$	${ }^{107}$	$\begin{array}{\|c\|c} 109 \\ \mathbf{L r} \end{array}$

Pre-periodic table chemistry ...

- ...was a mess!!!
- No organization of elements.
- Imagine going to a grocery store with no organization!!
- Difficult to find information.
- Chemistry didn't make sense.

Dmitri Mendeleev:

Father of the Periodic Table

In 1869 he published a table of the elements

HOW THIS WORKED...

- 70 known elements.
- Put elements in rows by increasing atomic mass.
- Put elements in columns by the way they reacted.

SOME PROBLEMS...

- He left blank spaces for undiscovered elements.
- Some elements didn't fit, he said their weight must be wrong.

He predicted the physical properties of three elements that were yet unknown.

The discovery of these elements between 1874 and 1885...
plus
the fact that his predictions for $\boldsymbol{S c}, \boldsymbol{G a}$, and $\boldsymbol{G e}$ were close to the actual values...
his table was generally accepted.

Henry Moseley

In 1913, using X-rays, determined the actual nuclear charge $=$ atomic number.

Rearranged the elements in order of increasing atomic number

The Current Periodic Table

Elements are put in rows by increasing ATOMIC NUMBER!!

Elements in the same group have similar chemical \& physical properties!!

3 classes of elements

1. Metals: located to the left of the zig-zag line

Properties of Metals

- All Solids!!! Except one - which is it??
- shiny surface

- malleable (can be pounded it into a flat sheet)
- ___ ductile_ (can be drawn it into a thin wire)
- good conductors (heat/electricity travels through it easily)

3 classes of elements

2. Nonmetals: located to the _right of the zig-zag line.

Properties of Nonmetals

- dull surface

- brittle
- good _insulators (or poor conductors)

Nonmetals Seleat an element for mome information
\square
\square
\square
Ras Lim,iid

Sinliid

ETREV
IVA (1A) YA [E] VIA (16)

5

6
halogens noblegases FIIA [17]

F
CI
Br
I

HE
HE
AP
KI
Xe
HII

3 classes of elements

3. Metalloids (8): along the zig-zag line.

- Divide metals and nonmetals.
- Similar properties to nonmetals.
- EXCEPT good electrical conductors.

$$
\begin{aligned}
& \text { Example: silicon } \\
& \text { (Used in computer chips) }
\end{aligned}
$$

Review Notes 5.3 \& 6.2 Electron Configuration \& Orbitals

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{6} \ldots$

Quantum Mechanical Model of the Atom

- Orbital ("electron cloud")
- Region where there is 90% probability of finding an electron

Orbital

Shapes of s, p, and d-Orbitals

s orbital
porbitals

d orbitals

s, p, and d-orbitals

B
p orbitals:
Each of 3 pairs of lobes holds 2 electrons
$=6$ electrons

C
d orbitals:
Each of 5 sets of lobes holds 2 electrons
$=10$ electrons

Review Notes 5.3 \& 6.2 pt. 2 Electron Configuration \& Orbitals

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{6} \ldots$

Principal Quantum Number (n)

- Energy level (n)
- Size of the orbital
$-\mathrm{n}=\#$ of sub levels
$-\mathrm{n}^{2}=\#$ of orbitals

Electron Filling in Periodic Table

General Rules

- Pauli Exclusion Principle
- Each orbital can hold TWO electrons with opposite spins.

General Rules

Aufbau Principle

- Electrons fill the lowest energy orbitals first.
- "Lazy Tenant Rule"

General Rules

- Hund's Rule
- In a sublevel: one electron per orbital before doubling up.
- "Empty Bus Seat Rule"

Electron Configurations

Element	Orbital Filling				Electron Configuration
	1s	2s	$2 p_{x} 2 p_{y} 2 p_{z}$	3s	
H					$1 s^{1}$
He					$1 \mathrm{~s}^{2}$
Li		\uparrow	[ele		$\begin{aligned} & \text { ECT } \\ & \text { ind }{ }^{1} s^{2} 2 s^{1} \end{aligned}$
C		$\uparrow \downarrow$	$\uparrow \uparrow$		$1 s^{2} 2 s^{2} 2 p^{2}$
N		$\uparrow \downarrow$	\uparrow \uparrow \uparrow		$1 s^{2} 2 s^{2} 2 p^{3}$
0		$\uparrow \downarrow$	$\uparrow \downarrow$ \uparrow \uparrow		1s2 $\mathbf{s}^{\mathbf{2}} \mathbf{2 p}^{4}$
F		$\uparrow \downarrow$	$\uparrow \downarrow$ \uparrow \uparrow		$1 s^{2} 2 s^{2} 2 p^{5}$
Ne		$\uparrow \downarrow$	$\uparrow \downarrow$ $\uparrow \downarrow$		1s $\mathbf{2}^{2} \mathrm{~s}^{\mathbf{2}} \mathrm{p}^{6}$
Na		$\uparrow \downarrow$	$\uparrow \downarrow$$\downarrow \uparrow \downarrow$	\uparrow	1s $\mathbf{2}^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathrm{p}^{\mathbf{6}} \mathbf{3} \mathrm{s}^{\mathbf{1}}$

Notation

- Orbital Diagram

$8 e^{-}$
1s
2s
2p
- Electron Configuration

Energy Level Diagram

Energy Level Diagram

Hydrogen
Bohr Model

Electron Configuration $1 s^{1}$

Energy Level Diagram

Helium

Bohr Model

Electron Configuration $1 \mathrm{~s}^{2}$

Energy Level Diagram

Lithium

Bohr Model

Electron Configuration $1 s^{2} 2 s^{1}$

(1i)
 NUCLEUS

Energy Level Diagram

Carbon

Bohr Model

Electron Configuration
$1 s^{2} 2 s^{2} 2 p^{2}$

Energy Level Diagram

Nitrogen
 Bohr Model

Electron Configuration
$1 s^{2} 2 s^{2} 2 p^{3}$

Energy Level Diagram

Fluorine

Bohr Model

Electron Configuration
$1 s^{2} 2 s^{2} 2 p^{5}$

Energy Level Diagram

Aluminum

Bohr Model

Electron Configuration
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$

Energy Level Diagram

Argon

Bohr Model

Electron Configuration
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

$\underline{H} \underline{H e} \frac{\mathrm{Li}^{\mathrm{C}} \mathrm{C}}{\text { curon }} \mathrm{N} \frac{\mathrm{Al}}{\mathrm{Al}} \mathrm{Ar} \mathrm{F}$ Fe Fa

Energy Level Diagram

Energy Level Diagram

Review Notes 5.3 \& 6.2 (pt.3) Electron Configuration \& Orbitals

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{6} \ldots$

Shorthand Configuration

- Example - Germanium

[Ar] $4 s^{2} 3 d^{10} 4 p^{2}$

Shorthand Configuration

Element symbol

Ca
V
F
Ag
I
Xe
Fe
Sg

F
Ag

Xe
Fe
Sg

Electron configuration
[Ar] $4 s^{2}$
[Ar] $4 s^{2} 3 d^{B}$
[He] $2 s^{2} 2 p^{5}$
[Kr] $5 s^{2} 4 d^{9}$
[Kr] $5 s^{2} 4 d^{10} 5 p^{5}$
[Kr] $5 s^{2} 4 d^{10} 5 p^{6}$
$[\mathrm{He}] 2 \$ 744 p^{6} 3 s_{s}^{233} 3 q^{66} 4 s^{2} 3 d^{6}$
[Rn] $7 s^{2} 5 f^{14} 6 d^{4}$

Review Notes 5.3 \& 6.2 (pt.4) Electron Configuration \& Orbitals

$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{14} 5 d^{10} 6 p^{6} \ldots$

Valence Electrons

What are "valence electrons"?

- Electrons in the outer - most energy level.
- " s " electrons and " p " electrons only.

Counting Valence Electrons

- Group A \# = number of valence electrons

$$
\text { (exception Helium = } \underline{2} \mathrm{e}^{-\prime} \mathrm{s} \text {) }
$$

Examples: $\mathrm{Ca}=\underline{2} \mathrm{e}^{-\prime} \mathrm{s} \quad$ Nitrogen $=\underline{5} \mathrm{e}^{-\prime s} \quad$ Argon $=\underline{8} \mathrm{e}^{-\prime} \mathrm{s}$

- ALL d-block and f-block $=\underline{2}$ valence e-'s

Drawing Valence Electrons

Examples: Nitrogen $=\cdot \stackrel{\bullet}{N} \cdot \quad$ Hydrogen $=\mathbf{H} \cdot$

$$
\text { Carbon }=\cdot \bullet_{\bullet}^{\bullet}
$$

Electron Orbitals:

Electron Configurations of First 18 Elements:

Lithium ${ }_{3} \mathrm{Li}$	Beryllium ${ }_{4} \mathrm{Be}$	Boron ${ }_{5} B$	Carbon ${ }_{6} \mathrm{C}$	Nitrogen ${ }_{7} \mathrm{~N}$	$\begin{gathered} \text { Oxygen } \\ 8 \mathrm{O} \end{gathered}$	Fluorine ${ }_{9} \mathrm{~F}$	Neon ${ }_{10} \mathrm{Ne}$
Sodium ${ }_{11} \mathrm{Na}$	Magnesium ${ }_{12} \mathrm{Mg}$	Aluminum ${ }_{13} \mathrm{Al}$	Silicon ${ }_{14} \mathrm{Si}$	Phosphorous ${ }_{15} \mathrm{P}$	Sulfur ${ }_{16} \mathrm{~S}$	Chlorine ${ }_{17} \mathrm{Cl}$	Argon ${ }_{18} \mathrm{Ar}$

Electron Dot Diagrams

Group							
14	2A	318	4 A	5＊	646	7／	8A8
H							$\mathrm{He}{ }^{\circ}$
Li	${ }^{\circ} \mathrm{Be}{ }^{\text {－}}$	\dot{B}	$\stackrel{\circ}{\mathrm{C}}$	\dot{N}	0	$\because F$	： Ne°
Na 。	${ }^{\circ} \mathbf{M g}$ 。	Al	$\stackrel{\circ}{\mathrm{S}} \mathrm{i}$	$\stackrel{\bullet}{\mathbf{P}}$	\ddot{S}	$: \because \stackrel{\bullet}{\mathrm{Cl}}$	$\stackrel{\bullet}{\mathbf{A r}}$
K ${ }^{\text {－}}$	${ }^{\circ} \mathrm{Ca}$	-亩	Ge	- As	－Se	$\stackrel{\bullet}{\mathrm{Br}}$	$: \mathbf{K r}^{\circ}$
s^{1}	s^{2}	$s^{2} p^{1}$	$s^{2} p^{2}$	$s^{2} p^{3}$	$s^{2} p^{4}$	$s^{2} p^{5}$	$s^{2} p^{6}$

Review Notes 6.3

- Lanthanide Senes	$\stackrel{s}{\mathrm{Ce}}$	$\mathbf{P r}$	Nd	Pm	Sm	Eu	${ }^{54} \text { Gd }$	ть	${ }_{\mathrm{D}}^{\boldsymbol{E}}$	Ho	Er	$]_{\mathrm{Tm}}^{\overline{9}}$	$\overline{Y O}_{\mathbf{Y}}$	Lu
+ Actinide Series	$\begin{gathered} \mathrm{son} \\ \text { Th } \end{gathered}$	Pa	U	$\stackrel{50}{\text { Np }}$	$\begin{array}{\|l\|} \hline 34 \\ \text { Pu } \end{array}$	$\xrightarrow{\text { Sesm }}$	$\stackrel{5}{5}$	Bk	$\stackrel{58}{\text { Cf }}$	Es	$\begin{aligned} & 1001 \\ & \mathrm{Fm} \end{aligned}$	Md	$\begin{gathered} 1 \mathrm{Cl} \\ \text { No } \end{gathered}$	${ }_{10}^{10}$

Trends in the Periodic Table

Atomic Size (Atomic Radius)

> (See Fig. 14.10)

- Moving Down a Group= the size of the atoms increases
- Why? You are adding __more of electrons to higher and higher energy levels (farther and farther out.)
- Moving Across a Period= the size generally __ decreases
- Why? You are adding more e^{-}and p^{+}to the same energy level. This causes more attraction of opposite charges and it ___ pulls the electron cloud inward.

$\underbrace{\text { Trends in table }}_{\text {Atomic size vs. Ion Size }}$

(See Fig. 14.8)

- Cation $=(+)_{\text {) charged atom created by removing }}^{\text {e-'s. }}$
- Cations are smaller than the original atom.
- Metals generally form cations.
- $\operatorname{Anion}=\left(_\right)$charged atom created by \quad adding ___e-'s.
- Anions are larger than the original atom.
- Nonmetals generally form anions.

Trends in the Periodic Table

Atomic Size vs. Ion Size

Determining the Ion Formed

- Atoms try to achieve a noble gas configuration when forming an ion. (This makes them more stable.)
- Locate the nearest noble gas and count how many "places" it is away, but remember that you can skip over the d-block!!
- This amount will be the same as the \# of e^{-9} s either gained or lost by the atom when forming an ion.

Practice Problem: How many electrons are gained or lost when forming an ion from the following elements?
a) Magnesium: $\quad 2$ (gained or lost)
b) Iodine: _1 (gained or lost)
c) Gallium: 3 (gained or lost)
d) Boron: 3 (gained or lost)

Review Notes 6.3 pt. 2

- Lanthanide Senes	$\stackrel{s e}{\mathrm{Ce}}$	$\begin{gathered} 59 \\ \mathbf{P r} \end{gathered}$	Nd	$\begin{aligned} & 51 \\ & \mathrm{Pm} \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline \mathbf{S m} \end{array}$	Eu	E4 Gd	Tb	Dy	Ho	$\stackrel{*}{\text { Er }}$	$\overline{\mathbf{T m}}$	Ya	$\left.\right\|^{71}$
+ Actinide Series	$\begin{gathered} 30 \\ T h \end{gathered}$	Pa	$\begin{array}{\|l} s z \\ u \end{array}$	$\mathbf{N p}$	$\begin{array}{\|l\|} \hline 94 \\ \mathbf{P u} \end{array}$	$\begin{aligned} & x=5 \\ & A_{m} \end{aligned}$	$\begin{aligned} & \infty \\ & \mathrm{Cm} \end{aligned}$	Bk	$\stackrel{s}{\mathbf{C f}}$	Es	100	$\begin{aligned} & \hline 101 \\ & \text { MId } \end{aligned}$	$\begin{gathered} 1 \mathrm{Cl} \\ \mathrm{No} \end{gathered}$	$\begin{array}{r} 10 \mathrm{Lr} \\ \mathrm{Lr} \end{array}$

Trends in the Periodic Table

(See Fig. 6.16 \& 6.17)

- Ionization energy is the energy required to \qquad the outer most electron in an atom.
- Moving Down a Group $=$ decreases ___ (less energy is needed)
-Why? You are trying to remove an electron that is farther and farther out (for larger and larger atoms). These $\mathrm{e}^{-\prime} \mathrm{s}$ are not as \qquad to the nucleus.
- In general, the larger the atom, the less attracted it is to its $\mathrm{e}^{-9} \mathrm{~s}$.

Trends in the Periodic Table lonization Energy

- Moving Across a Period= generally ___ increases
- Why? Moving across a period takes us from metals to nonmetals. More ionization energy is needed for _ nonmetals compared to \qquad .
- Also, since metals generally form cations , it won't take as much energy to remove it's outer most electron.
- Remember that as you move across the period, the atoms get smaller and therefore more attracted to the electrons.

Trends in the Periodic Table
 Successive Ionization Energies

(See Table 6.2)

- "Successive Ionization Energies" means the energy required to remove a $\quad 2^{\text {nd }}$ or a $3^{\text {rd }}$ electron from an atom.
-Removing more and more e^{-}s requires more and more energy.
-Why? The remaining e ${ }^{-9}$ s are more tightly bound to
the nucleus.

Trends in the Periodic Table

Electronegativity

(See Fig 6.18)

- Electronegativity is a relative value (from_0-4.0) which compares how much an atom is attracted to the e^{-}'s in a chemical bond.
- Moving Down a Group= generally __ decreases __ (less attraction)
- Why? The bonded electron is farther and farther out. These $\mathrm{e}^{-} \mathrm{s}$ will not be as attracted to the larger and larger atoms.

Trends in the Periodic Table

Electronegativity

- Moving Across a Period= generally ___ increases
- Why? Again, the atoms are getting _smaller so they are more attracted to the bonding electrons.
- Also, moving across a period takes us from metals to nonmetals. Since nonmetals generally form anions , they tend to gain__ e-'s anyway, and this makes them highly attracted to $e^{-\prime} s$ when forming a chemical bond.

Periodic Table Geography

Halogens

- Very reactive, volatile, diatomic, nonmetals
- Always found combined with other element in nature .

Noble Gases

- VERY unreactive, monatomic gases
- Have a full valence shell.

Alkali Metals

- Very reactive metals (solids) with air and water, always combined with something else in nature (like in salt).
- Soft enough to cut with a butter knife

Alkaline Earth Metals

-Reactive metals (solids) that are always combined with nonmetals in nature.
-Several of these elements are important mineral nutrients (such as Mg and Ca
-Also, used used in batteries

Transition Metals

Transition Metals

Carbon Family

- Elements in group 14
- Contains elements important to life and computers.
- Carbon is the basis for an entire branch of chemistry.
- Silicon and

Germanium are important semiconductors.

Nitrogen Family

- Elements in group 15
- Nitrogen makes up over 80% of the atmosphere.
- Nitrogen and phosphorus are both important in living things.
- The red stuff on the tip of matches is phosphorus.

Oxygen Family or Chalcogens

- Elements in group 16
- Oxygen is necessary for respiration.
- Many things that stink, contain sulfur (rotten
 eggs, garlic, skunks,etc.)

QUESTIONS

