Ch. 12.1 Review Notes Stoichiometry

- Stoichiometry: calculations of chemical quantities from balanced equations.

Reactants $\xrightarrow{\text { stöснометRY }}$ Products

Interpreting Chemical Equations

The first thing that must be done is to $B \triangle A N C E$ the equation!

$$
\underline{1} \mathrm{~N}_{2(\mathrm{~g})}+\underline{3} \mathrm{H}_{2(\mathrm{~g})} \rightarrow \underline{2} \mathrm{NH}_{3(\mathrm{~g})}
$$

Information in an equation:

$\frac{1}{2}$ mole $\mathrm{N}_{2}+\frac{3}{2}$ moles $\mathrm{H}_{2} \rightarrow \frac{2}{}$ moles NH_{3}
\ldots _ molecule $\mathrm{N}_{2}+\ldots$ _ molecules $\mathrm{H}_{2} \rightarrow$ _ molecules NH_{3} $28.02 \mathrm{grams} \mathrm{N}_{2}+6.06$ grams $\mathrm{H}_{2} \rightarrow 34.08$ grams NH_{3}
34.08 grams reactants $\rightarrow 34.08$ grams products

Interpreting Chemical Equations

Balance and interpret this equation in terms of moles, particles, and mass. Show Law of Conservation of Mass is proved!

$$
\begin{equation*}
2 \mathrm{NaOH}_{(\mathrm{aq})}+\ldots \ldots \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \ldots \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\underset{2}{ } \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

- $\underline{2} \mathrm{~mol} \mathrm{NaOH}+1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}+\underline{2} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
$\bullet \underline{2}$ f.u. $\mathrm{NaOH}+1$ molec $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 1$ f.u. $\mathrm{Na}_{2} \mathrm{SO}_{4}+2$ molec. $\mathrm{H}_{2} \mathrm{O}$
$\bullet 80.00 \mathrm{~g} \mathrm{NaOH}+98.09 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 1 \underline{42.05} \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}+36.04 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$1 \underline{78.09}$ grams reactants $\rightarrow 178.09$ grams products

Ch. 12.2 Review Notes Mole to Mole Conversions

- Conversion factor is a mole ratio.
- Mole ratios come from the coefficients on balanced equations.

Step 1: Identify the Known(A) and Unknown(B).
Step 2: Set up a mole ratio to change from moles A to moles B

Practice Problems: $\quad \mathbf{N}_{\mathbf{2}(\mathrm{g})}+\mathbf{3 H}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathbf{2} \mathbf{N H}_{\mathbf{3}(\mathrm{g})}$

1) How many moles of ammonia can be made from 7 moles of nitrogen reacting with an excess of hydrogen?

K(A): $\mathbf{7} \mathbf{~ m o l} \mathbf{N}_{\mathbf{2}}$

$$
7 \mathrm{motN}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{molN}_{2}}=14 \text { moles of } \mathrm{NH}_{3}
$$

Mole to Mole Conversions

Step 1: Identify the known(A) and unknown(B).
Step 2: Set up a mole ratio to change from moles A to moles B Practice Problems:

$$
\mathbf{N}_{2(\mathrm{~g})}+3 \mathbf{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

2) How many moles of hydrogen are required to completely react with 8 moles of nitrogen to produce ammonia?
$K(A): \mathbf{8 ~ m o l ~} \mathbf{N}_{\mathbf{2}}$

$$
8 \mathrm{mołN}_{2} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol}_{2}}=24 \text { moles of } \mathrm{H}_{2}
$$

?(B): $\mathbf{m o l ~ H} \mathbf{2}$

3) How many moles of hydrogen are needed to react with an excess of nitrogen to make 10 moles of ammonia?

$$
10 \mathrm{molNH}_{3} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \operatorname{mot~\mathrm {NH}_{3}}}=15 \text { moles of } \mathrm{H}_{2}
$$

Ch. 12.2 Review Notes pt. 2 Stoichiometry

Mass A to Mass B Conversion Problems

Step 1: Make sure you have a balanced equation!
Step 2: Identify the known (A) and unknown (B).
Step 3: Convert using the chart!

$$
\text { mass } \mathrm{A} \rightarrow \text { moles } \mathrm{A} \rightarrow \text { moles } \mathrm{B} \rightarrow \text { mass } \mathrm{B}
$$

Practice Problem: How many grams of ammonia can be made from reacting 39.0 grams of nitrogen with an excess of hydrogen?
$\mathrm{K}(\mathrm{A}): \mathbf{3 9 . 0} \mathbf{g} \mathbf{N}_{\mathbf{2}}$
$\mathrm{N}_{\mathbf{2}(\mathrm{g})}+3 \mathrm{H}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathbf{2} \mathrm{NH}_{\mathbf{3}(\mathrm{g})}$
?(B): $\mathbf{g} \mathbf{N H}_{\mathbf{3}}$
$39.0 \mathrm{gN}_{2} \times \frac{1 \mathrm{molN}_{2}}{28.02-\mathrm{gN}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{molN}_{2}} \times \frac{17.04 \mathrm{~g} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=47.4 \mathrm{~g} \mathrm{NH}_{3}$

Practice Problem: What mass of calcium hydroxide will be produced from the reaction of 2.50 mol of calcium hydride with excess water?

$$
\mathrm{CaH}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{H}_{2(\mathrm{~g})}
$$

Known-A
$2.50 \mathrm{~mol} \mathrm{CaH}_{2}$
Unknown-B
$\mathrm{g} \mathrm{Ca}(\mathrm{OH})_{2}$

moles $A \rightarrow$ moles $B \rightarrow$ mass B

$2.50 \mathrm{~mol}^{\mathrm{CaH}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~mol}^{\mathrm{CaH}_{2}}} \times \frac{74.10 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}=185 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$

Practice Problem: What mass of water is needed to react 2.50 mol of calcium hydride?

$\mathrm{CaH}_{2(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{H}_{2(\mathrm{~g})}$
 Known-A
 2.50 mol CaH 2
 Unknown-B
 $\mathrm{g} \mathrm{H}_{2} \mathrm{O}$

moles $A \rightarrow$ moles $B \rightarrow$ mass B
$2.50{\mathrm{~mol} \mathrm{CaH}_{2}}^{2} \frac{2 \mathrm{molH}_{2} \mathrm{O}}{1 \mathrm{molCaH}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}}=90.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

- Carbon dioxide reacts with a calcium oxide solution to produce calcium carbonate. What mass of calcium carbonate would be produced if you blew $0.0900 \mathrm{~mol} \mathrm{CO}_{2}$ into a test tube of CaO ?

$$
\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{CaO}_{(\mathrm{aq})} \rightarrow \mathrm{CaCO}_{3(\mathrm{~s})}
$$

Known-A
0.0900 mol CO 2

Unknown-B
g CaCO 3

$$
\text { Moles A } \rightarrow \text { Moles B } \rightarrow \text { Mass B }
$$

$0.0900 \mathrm{molCO}_{2} \times \frac{1 \mathrm{molCaCO}_{3}}{1 \mathrm{molCO}_{2}} \times \frac{100.08 \mathrm{~g} \mathrm{CaCO}_{3}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}=9.01 \mathrm{~g} \mathrm{CaCO}_{3}$

Ch. 12.3 Review Notes Stoichiometry

Limiting Reagent (or Limiting Reactant)

- The limiting reagent is the reactant that runs out first.
- The reactant that is in abundance is called the \qquad reagent.

Before reaction

$10 \mathrm{H}_{2}$ and $7 \mathrm{O}_{2}$

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}
$$

Limiting Reagent Calculations

Step 1: Do a mole-mole conversion for one of the substances.

- The answer is how much of it you need.

Step 2: Compare your answer to how much reactant was given.

- Do you have enough? If not, this reactant is your limiting reagent!

Practice Problems: $\quad \mathrm{N}_{2(\mathrm{~g})}+\mathbf{3 H}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathbf{2 N H} \mathbf{3}_{(\mathrm{g})}$

1) If 2.7 moles of nitrogen reacts with 6.3 moles of hydrogen, which will you run out of first?
$2.7 \mathrm{mot}_{2} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=\begin{aligned} & 8.1 \text { moles of } \mathrm{H}_{2} \text { are } \\ & \text { needed for the reaction. }\end{aligned}$

Do we have enough H_{2} ?
No! (6.3<8.1)
Limiting Reagent $=\underline{H_{2}}$

Limiting Reagent Calculations

Step 1: Do a mole-mole conversion for one of the substances.

- The answer is how much of it you need.

Step 2: Compare your answer to how much reactant was given.

- Do you have enough? If not, this reactant is your limiting reagent!

Practice Problems: $\quad \mathbf{N}_{2(\mathrm{~g})}+\mathbf{3 H}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathbf{2} \mathbf{N H}_{\mathbf{3}(\mathrm{g})}$
2) If 3.9 moles of nitrogen reacts with 12.1 moles of hydrogen, what is the limiting reagent?

Do we have enough H_{2} ? Yes! (12.1>11.7)
Limiting Reagent $=\underline{N_{2}}$

Calculating Excess Reagent

Step 1: Do a mole-mole conversion starting with the limiting reagent
The answer is how much of the excess reagent you need to completely react with the limiting reagent.
Step 2: Subtract this answer from the original amount given

Practice Problem: Find the number of moles of excess reagent from the first practice problem.

$$
6.3 \operatorname{mot} \mathrm{H}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{3 \mathrm{mot}_{2}}=2.1 \text { moles of } \mathrm{N}_{2} \text { are needed for }
$$

2.7 moles of N_{2} were originally given, so the excess will be...
2.7 moles given -2.1 moles needed $=$

Excess Reagent (or Excess Reactant)

Step 1: Do a mole-mole conversion starting with the limiting reagent
Step 2: Subtract this answer from the original amount given

Practice Problem: Find the number of moles of excess reagent from the second practice problems.

- We already know mol $\mathrm{H}_{2} \ldots$ so just subtract.
$12.1 \mathrm{~mol} \mathrm{H}_{2}$ given $-11.7 \mathrm{~mol} \mathrm{H}_{2}$ needed $=1$

Ch. 12.4 Review Notes
 Percent Yield

Percent Yield

- Percent Yield is a ratio that tells us how \qquad a chemical reaction is.
- The higher the $\%$ yield, the more efficient the reaction is.

$$
\% \text { Yield }=\frac{\text { Actual yield }}{\text { Theoretical yield }} \times 100
$$

- The _actual yield is the experimental data from running the reaction in a lab.
- The theoretical yield is the ideal amount! Calculate this amount using stoichiometry!

Percent Yield

Practice Problem: $\quad \mathbf{2 H}_{\mathbf{2}(\mathrm{g})}+\mathbf{O}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathbf{2 \mathbf { H } _ { 2 }} \mathbf{O}_{(\mathrm{g})}$

1) A student reacts 40.0 grams of hydrogen with an excess of oxygen and produces 300.0 grams of water. Find the \% yield for this reaction.

Step 1: Calculate mass A \rightarrow mass B starting with reactant!
The answer you get is how much water you "theoretically" should have produced.

$$
40.0 \mathrm{gH}_{2} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2.02 \mathrm{gH}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{molH}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}}=357 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

Step 2: Identify actual yield then calculate \% yield!

$$
\% \text { Yield }=\frac{300 \mathrm{~g}}{357 \mathrm{~g}} \times 100=84.0 \%
$$

Percent Yield

Practice Problem: $\quad \mathbf{2 H}_{\mathbf{2}(\mathrm{g})}+\mathbf{O}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathbf{2 H}_{\mathbf{2}} \mathbf{O}_{(\mathrm{g})}$

2) If 2.0 grams of hydrogen completely reacted with 16.0 grams of oxygen but only produced 17.5 grams of water, what is the $\%$ yield for the reaction?

Theoretical Yield $=2.0 \mathrm{~g}+16.0 \mathrm{~g}=18.0$ grams

$$
\% \text { Yield }=\frac{17.5 \mathrm{~g}}{18.0 \mathrm{~g}} \times 100=97.2 \%
$$

