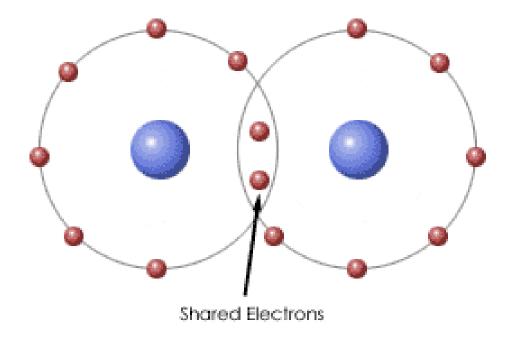
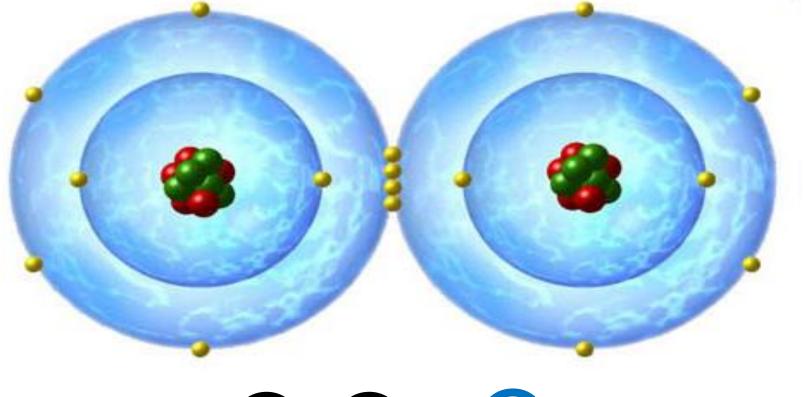

Fructose Review Notes 9.1 Covalent Bonding

Carbon Dioxide



Ammonia


Molecules and Molecular Compounds

- Compounds bond by <u>sharing electrons</u>.
- Shared valence electrons = <u>covalent bond</u>.

"Molecules"

form when two or more atoms bond covalently.

Covalent Bonds

Formed between two nonmetals.

Remember Ionic is between a metal and nonmetal

Nonmetals have high electronegativity values

...means they are attracted to other electrons.

Three types of sharing:

single bond shares 1 pair = 2 electrons

- **double bond** shares 2 pairs = 4 electrons =
- triple bond shares 3 pairs = 6 electrons

Learning Check

Indicate whether a bond between the following would be 1) lonic 2) covalent

- A. sodium and oxygen
- **2** B. nitrogen and oxygen
 - C. phosphorus and chlorine
 - D. calcium and sulfur
 - E. chlorine and bromine

Lewis Structures

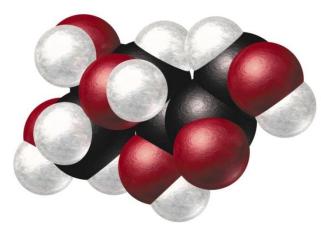
 Use electron-dot structures to show how electrons are arranged in molecules

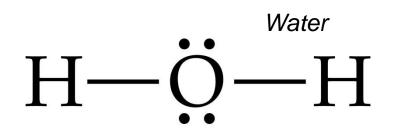
• Example: Hydrogen H₂

Н:Н н-н

Drawing Lewis structures for covalent bonds:

- N (Needed):

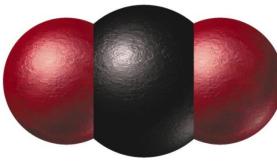

- All atoms need 8.
- Hydrogen needs only 2.
- A (Available):
 - Number of valence electrons.
- S (Shared):
 - Subtract: Needed Available
 - Divide by 2 = **# of bonds**.
- Draw the molecule.
 - First atom in the <u>center</u>.
 - H and Halogens are usually on outside.
 - Draw in bonds.
 - Fill in all Available electrons.


Draw the Lewis-dot-structure for the following molecules

1) HF

2) CCI_2H_2

3) CO

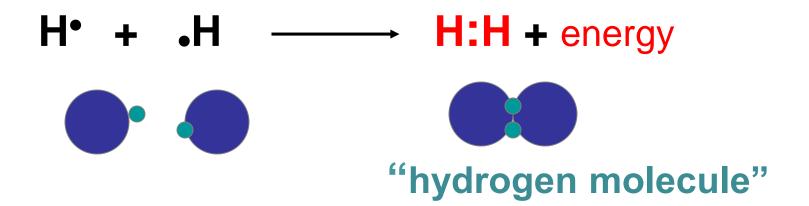


Fructose

Review Notes 9.1 (pt.2)

Carbon Dioxide

Ammonia


Covalent Bonds secrets...

- <u>Halogens and Hydrogen</u> form **one** bond
 - Example: H₂, Cl₂
- <u>Group 6A</u> elements form **two** bonds
 - Example: H₂O
- <u>Group 5A</u> elements form **three** bonds
 - Example: NH₃
- <u>Group 4A</u> elements form **four** bonds
 - Example: CH₄

Covalent Bonds

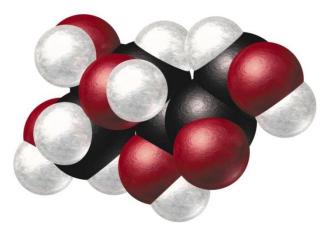
When covalent bonds form energy is released.

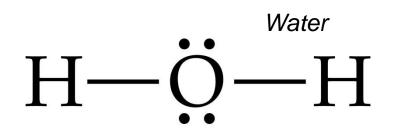
- Exothermic reaction (energy released)
- Bonds are stable = lower energy!

Energy Change

- Energy is released when bonds form
- Energy is absorbed to break bonds
- Energy required is *bond dissociation energy*
- Exothermic is when more energy is released than is absorbed to break the bonds (= hot).
- <u>Endothermic</u>: more energy is absorbed to break bonds than was released (= cold).

Strength of Covalent Bonds

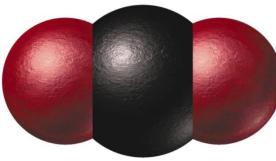

- <u>Distance</u> between nuclei is <u>bond length</u>
- Bond length depends on:
 - 1. size of the atoms
 - *larger atom = larger distance*
 - 2. # of shared electron pairs (bonds)
 - *more shared pairs = shorter bond*
 - Shorter = stronger


Strength of Covalent Bonds

So...

- Single bond (sigma bond)

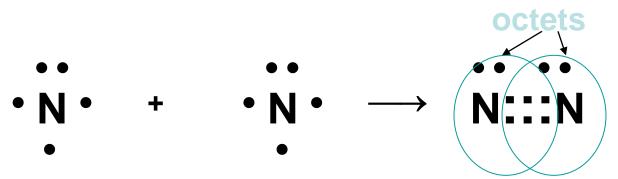
- longest and weakest
- lowest bond dissociation energy
- Double Bond (sigma+pi)
 - middle length and strength
- Triple bond (sigma+pi+pi)
 - shortest and strongest
 - highest bond dissociation energy



Fructose

Review Notes 9.1 (pt.3)

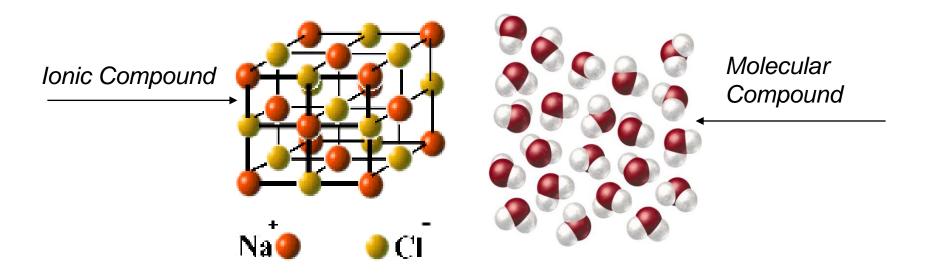
Carbon Dioxide



Ammonia

Diatomic Molecules

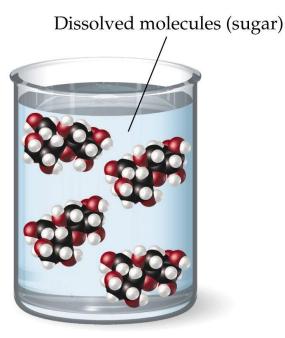
Seven elements are "diatomic"


- more stable together than apart
- Halogens: F₂, Cl₂, Br₂, l₂
- Other: H₂, N₂, O₂

only when they are alone (i.e. no other elements)

Properties of Molecular Compounds

- Usually gases or liquids.
- Relatively low melting and boiling points
 - Reason: no bonds between molecules, so easier to separate!


Properties of Molecular Compounds

Nonelectrolytes

- Do not conduct electricity.
- Reason: do not break apart into ions.

Electrolyte solution

Nonelectrolyte solution

Energy Change

- Energy is released when bonds form
- Energy is added to break bonds
- Energy required is *bond dissociation energy*
- <u>Endothermic</u>: more energy is required to break bonds than was released (cold).
- Exothermic is when more energy is released than is required to break the bonds (hot).

Review Notes 9.2: Naming Binary Molecules

Naming Binary Molecular Compounds

- Binary = 2 nonmetals
- Scientific names reveal composition:
 - indicate the <u>number</u> and <u>type</u> of atoms
 - 1. prefix+first nonmetal
 - *mono-* is only used with oxygen
 - 2. prefix+second nonmetal w/ide.

Greek Prefixes

We use Greek all the time!

- What do you call a train that runs on one rail?
 MONORAIL
- What do you call the non-motorized object that has pedals and <u>2</u> wheels?

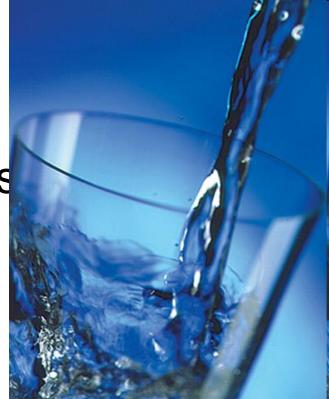
<u>Bi</u>cycle

 On your paper come up with a good example for the prefix we use daily for <u>3</u>?

Prefixes in Covalent Compounds

Number of atoms	Prefix	Number of atoms	Prefix
1	mono-	6	hexa-
2	di-	7	hepta-
3	tri-	8	octa-
4	tetra-	9	nona-
5	penta-	10	deca-

Practice


Example: N₂O₄

<u>Di</u>nitrogen <u>tetr</u>oxide

 P_2O_5

- SF₆ Sulfur hexafluoride
- Diphosphorus pentoxide
- SO₂ Sulfur dioxide
- nitrogen pentachloride NCl₅
- **IF**₇ Iodine heptafluoride

Anyone want a cold glass of dihydrogen monoxide?

Formula	Common Name	Maecular compounds name	
H ₂ 0	Water	Dihydrogen monoxide	
NH ₃	Ammonia	Nurogen trihydria	

Review Notes 9.2 (pt.2): Naming Acids

What are Acids?

• Water solutions of some molecules are acidic.

-pH less than 7 = acid

Acids produce H⁺ in water

$$-$$
 Ex: HCI \rightarrow H⁺ + CI⁻

– HINT: Any compound that starts with an H!

Naming **Binary** Acids

Contains **H** + **X** (*an anion*)

- 1) Start with *hydro-*
- 2) Change ending to –*ic*
- 3) Add "*acid"*

Hydro- X -ic acid

Acid with no oxygen? Name as a binary acid!

- Ex: HCN= *I*

Naming Oxyacids

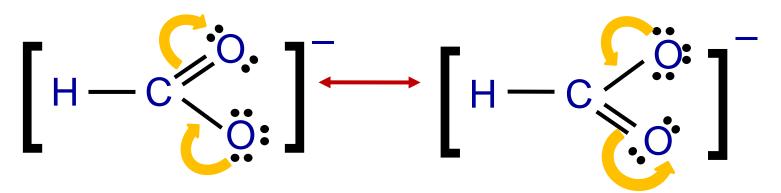
- Oxyacids = H⁺ + <u>oxyanion</u>
- Oxyanions: Anion w/oxygen $(NO_3^{-}, PO_4^{-}, CIO^{-})$
- Name comes from polyatomic!
 - 1) Identify the polyatomic
 - replace –*ate* with -*ic*
 - replace –*ite* with –*ous*
 - 2) Add *acid*.

Naming Oxyacids

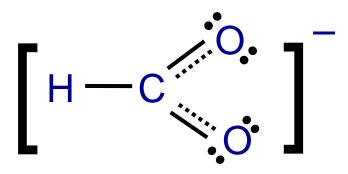
- Example:
 - $-HNO_3$
 - $-HNO_3 \rightarrow H^+ + NO_3^-$
 - the polyatomic nitr<u>ate</u> \rightarrow nitr<u>ic</u> + acid
 - $-HCIO_2$
 - $-HCIO_2 \rightarrow H^+ + CIO_2^-$
 - the polyatomic chlor<u>ite</u> \rightarrow chlor<u>ous</u> acid

hydro- is <u>NEVER</u> part of oxyacids!

Classify then name:

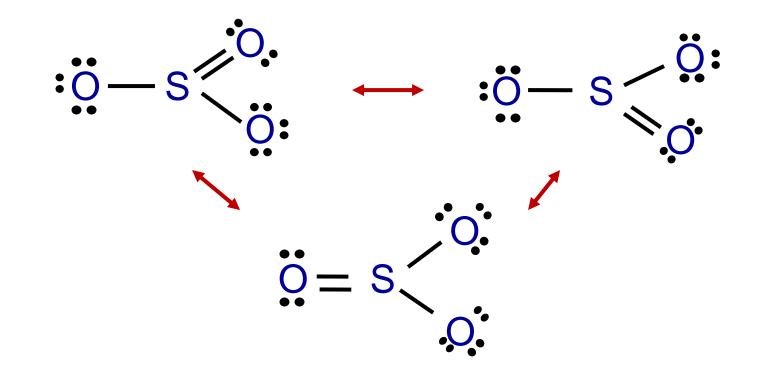

Assume they are dissolved in water! 1) HI

- 2) HClO
- 3) Phosphoric acid
- 4) Hydrocyanic acid
- **5) H**₂**CO**₂
- 6) Acetic acid


Review Notes 9.3

Resonance Structures

- Occur when there is more than one valid Lewis structure
- Differ in position of electron pairs, never atom positions



• Actual molecule behaves as one structure

Question

1) Draw the Lewis Dot structures for SO_3 .

Exceptions to the Octet Rule

1) A small group of molecules has an odd number of valence electrons.

- 2) BORON is stable with 6 electrons!
 - Ex: BH₃

Exceptions to the Octet Rule

- 3) Some central atoms have more than eight valence electrons
 - Referred to as an "expanded" octet
 - Explained by including d-orbitals
 - Extra lone-pairs/bonds are added to the central atom.

PCl₅ (<u>10</u> e⁻) SF₆ (<u>12</u> e⁻)

Question

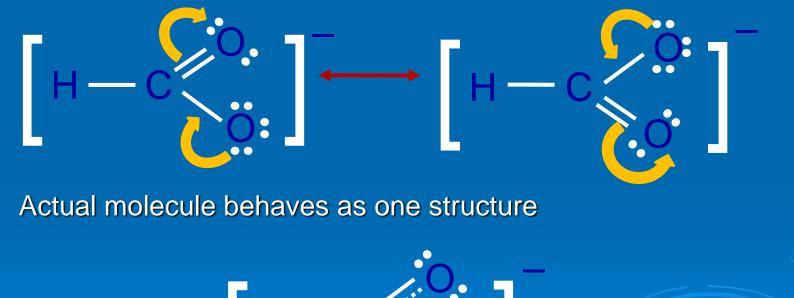
Xenon will form a few compounds with nonmetals that strongly attract electrons.

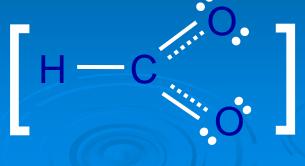
Draw the correct Lewis structure for **XeF**₄.

Review Notes 9.4 - Molecular Shape

- Molecules have **3-D**imensional shapes!
- Determined by number of <u>bonds</u> and <u>lone</u>
 <u>pairs</u> on **central atom**
- Use **VSEPR** theory
 - Valence-Shell-Electron-Pair Repulsion

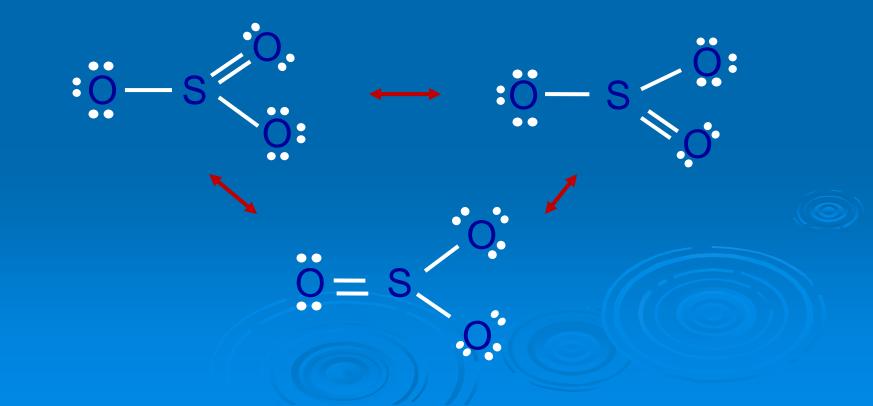
Using the VSEPR Model

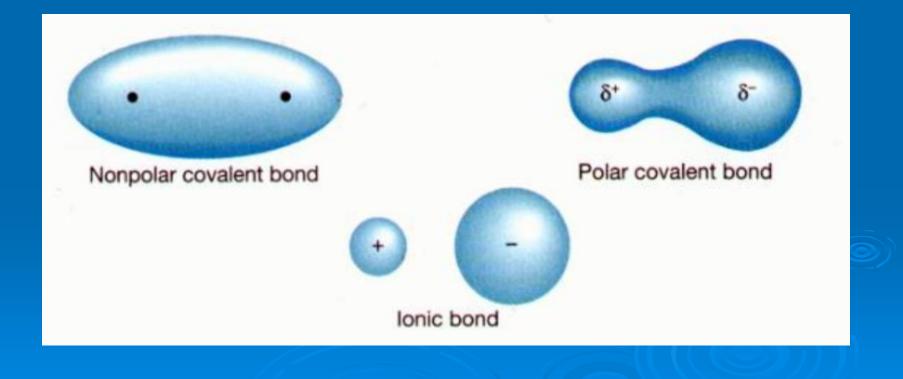

- 1. Draw Lewis structure (use NAS)
- 2. Identify **central** atom
- 3. Count electron pairs:
 - **1.** # of bonded pairs = ?
 - **2.** # of lone pairs = ?
- 4. Predict the shape of the molecule


Bonding and Shape of Molecules

Number of Bonds	Number of Lone Pairs	Covalent Structure	Shape	Examples
2	0	-Be-	Linear	BeCl ₂
3	0	- B	Trigonal planar	BF ₃
4	0	$-\overset{ }{\overset{ }{\overset{ }{\overset{ }{\overset{ }{\overset{ }{\overset{ }}{\overset{ }{\overset{ }{\overset{ }{\overset{ }}{\overset{ }{\overset{ }{\overset{ }{\overset{ }{\overset{ }{\overset{ }{\overset{ }}{\overset{ }{\overset{ }}{\overset{ }{\overset{ }}{\overset{ }}}}}}}}$	Tetrahedral	CH ₄ , SiCl ₄
3	1	- <mark>N</mark>	Pyramidal	NH ₃ , PCI ₃
2	2	- <mark>0</mark> :	Bent	H_2O , H_2S , SCI_2

Resonance Structures

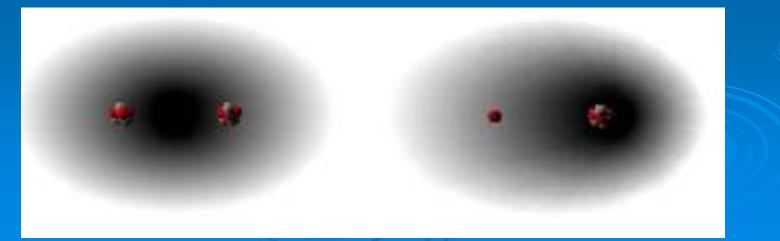

Occur when there is more than one valid Lewis structure
 Differ in position of electron pairs, never atom positions



1) Draw the Lewis Dot structures for SO_3 .

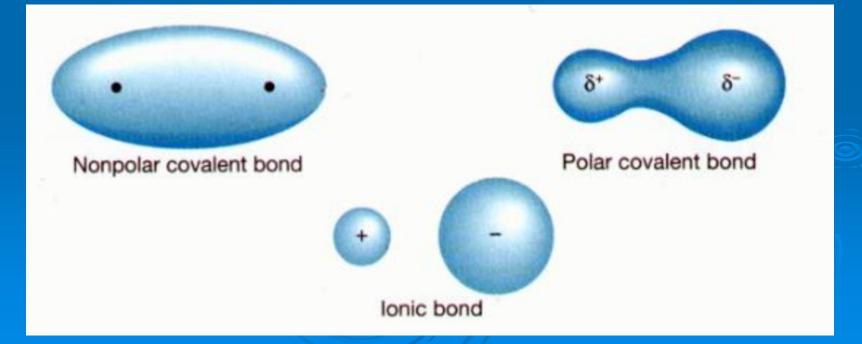
Electronegativity and Polarity Review Notes 9.5 pt.1

Recall Electronegativity...


- Electronegativity = ability to attract electrons in a bond
 - Increases across a period
 - Decreases down a group
- Fluorine is the most electronegative
 - N, O, F are sectron HOGS!!!
- Metals have low electronegativities.

Electronegativity & Bond Character

<u>Character</u> and <u>type</u> predicted by electronegativity differences.
Identical atoms: *electronegativity difference = zero*Electrons are <u>equally shared</u>
Pure covalent bond = <u>NON-POLAR</u>
Ex: N₂ Br₂


Electronegativity & Bond Character

▷ Different atoms: difference electronegativity ≥ zero
 • ~ 0-0.40 NON-POLAR COVALENT
 • ~ 0.4-2.0 POLAR COVALENT
 • Can range from SLIGHTY polar to VERY polar
 • Examples: O-CI O-S N-CI

Electronegativity & Bond Character

 Large difference in electronegativity result in an ionic bond (greater than 2.0).
 Examples: NaCl KF

Learning Check

Identify the type of bond between the following atoms

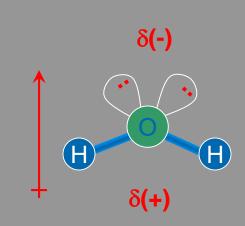
A. K-N Ionic (metal + non-metal)

B. N-O Slightly Polar covalent (O to the right of N)

C. CI-CI Pure covalent (equal sharing)

Electronegativity and Polarity Review Notes 9.5 pt.2

Bond Polarity


It's a tug-of-war...

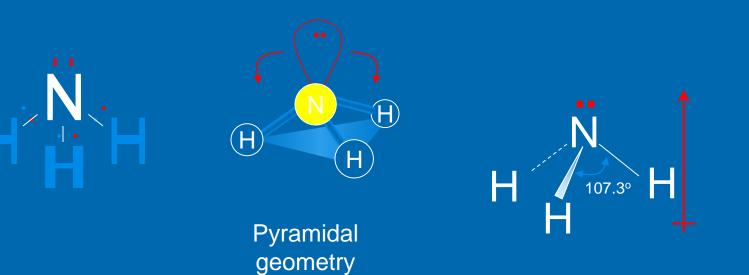
The shared pair of electrons is pulled toward one of the atoms

Molecular Polarity

Looks at ALL the bonds. > A greater density of electrons on one side of the molecule = • partial negative δ • partial positive δ^+ Creates a dipole

Polar molecule

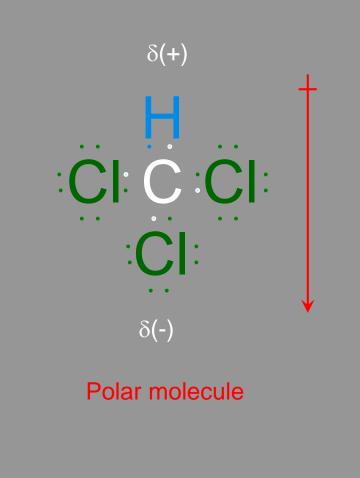
Polar Molecule or not?

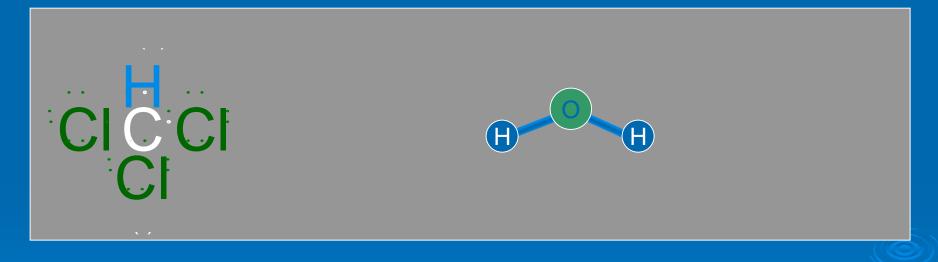

> The geometry is what is important

- Asymmetrical = polar
- Symmetrical = non-polar
 - Partial charges are balanced.

Is ammonia polar or non-polar?

- 1. Check symmetry
- 2. Draw VSEPR
 - **1**. NAS
 - 2. Lewis
 - **3**. Count bonded & lone pairs
 - 4. Check table


Ammonia- NH₃

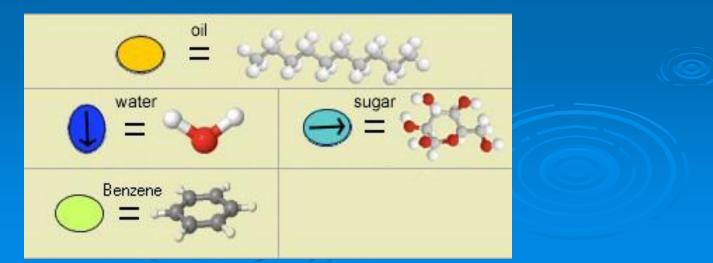

Molecular Polarity

 Trichloromethane
 C-Cl are considered polar

Polar Molecule or not?

Some molecules contain polar bonds but are not polar molecules

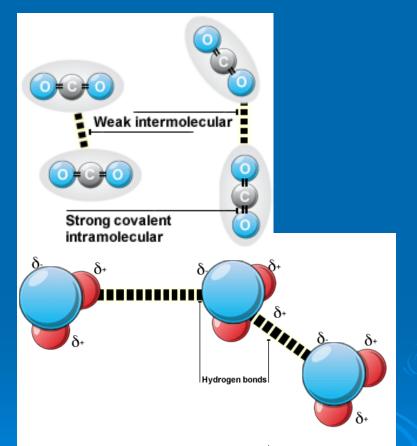
Carbon tetrachloride molecules are nonpolar


- Water molecules are polar
- Carbon dioxide molecules are nonpolar

Electronegativity and Polarity Review Notes 9.5 pt.3

Solubility of Polar Molecules

"LIKE dissolves LIKE"


- <u>Polar</u> molecules and ionic compounds are soluble in <u>polar</u> substances
- <u>Non-polar</u> molecules <u>dissolve</u> in <u>non-polar</u> molecules

Properties of Covalent Compounds

Intermolecular forces are the attraction between molecules

- "van der Waal forces"
- Weak for non-polar molecules
 - Dispersion forces
 - Movement of electrons
- Stronger for polar molecules
 dipole-dipole interactions

Many properties determined by these forces
 Boiling & melting point, state of matter, etc.